

Evaluation of Asphalt Mixture Design Framework for Airfield Pavements in Illinois

64th ILLINOIS BITUMINOUS PAVING CONFERENCE

Uthman Mohamed Ali Imad L. Al-Qadi Abdulgafar Sulaiman

December 5th, 2023

"Where Excellence and Transportation Meet"

Outline

- Background
- Objectives
- Materials and Experimental Plan
- Test Results and Discussions
- Summary and Conclusions
- Recommendations

Objective and Scope

Objective:

• To develop a framework that allows extending the use of existing IDOT highway pavement surface and binder HMA to non-primary airfield pavement applications.

Scope:

• Evaluate existing IDOT-certified HMA for FAA volumetric and performance requirements.

Illinois Center for Transportation University of Illinois at Urbana-Champaign

Testing Plan - HWTT

• 52 passes/min @ 50°C

PG 58-XX or lower5,000 passesPG 64-XX7,500 passesPG 70-XX15,000 passesPG 76-XX20,000 passes

Testing Plan – I-FIT

- 25°C and 50 mm/min rate
- Fracture Energy $(G_f) = \frac{W_f}{Ligament area}$
- Flexibility Index $(FI) = A \times \frac{G_f}{|m|}$ where A = 0.01

Testing Plan - TSR

Illinois Center for Transportation University of Illinois at Urbana-Champaign

- Dry subset at 25°C for 2hrs
- Conditioned subset
 - 70-80% saturation
 - 24hrs in 60°C bath & 2hrs @ 25°C
- Split tensile test

 $TSR = \frac{Conditioned \ tensile \ strength}{Unconditioned \ tensile \ strength} x100\%$

- Tensile strength ≥ 60psi (neat binder)
- TSR ≥ 0.85

Plant Surface Mixes

MIX ID	PH1	PH2 ^{FG}	PH3	PH4 ^{FG}	PA1	PA2	PA3	PA4
Design Specification	IDOT Highway	IDOT Highway	IDOT Highway	IDOT Highway	IDOT Airport	IDOT Airport	FAA	FAA
Design Gyrations	50	50	50	70	40	30	50	75
Binder PG	64-22	64-22	64-22	64-22	64-22	64-22	64-22	64-22
NMAS (mm)	9.5	9.5	9.5	9.5	9.5	9.5	12.5	9.5
Friction grade	С	С	С	С	С	D	С	С
Lithology	100% Limestone	100% Limestone	100% Limestone	100% Limestone	100% Limestone	100% Dolomite	100% Limestone	100% Limestone
Binder Content (%)	6.0	6.3	5.9	6.0	6.1	6.4	6.0	6.2
Air Voids (%)	4.0	4.0	4.0	4.0	3.0	2.0	3.5	3.5
VMA (%)	15.5	15.2	15.3	15.9	15.0	14.3	15.9	15.5
Dust/AC ratio	0.83	0.89	0.98	0.9	0.91	1.04	0.87	0.97
RAP (%)	15	15	16	10	0	0	0	0

PH: Plant Highway; **PA:** Plant Airport; ^{FG}: Fine-graded;

Laboratory Surface Mixes

MIX ID	H1	H2	H3	H4*	H5*	A1	A2
Design Specification	sign Specification IDOT Highway IDOT Highway IDOT Highway IDOT		IDOT Highway	IDOT Highway	IDOT Airport	IDOT Airport	
Gyration	70	70	50	50	50 50 30		40
Binder PG	64-22	70-22	64-22	64-22	64-22	64-22	64-22
NMAS (mm)	9.5	9.5	9.5	9.5	9.5	9.5	9.5
Friction Grade	С	D	D	D	D	С	С
Lithology	100% Limestone	50% Limestone 50% Gravel	100% Dolomite	50% Traprock 50% Limestone	100% Dolomite	100% Limestone	100% Limestone
Binder Content (%)	6.0	6.2	6.2	6.0	6.1	6.0	6.0
Air Void (%)	3.9	4.0	4.1	4.9	5.1	2.0	2.8
VMA (%)	14.9	15.2	15.2	16.2	15.9	13.3	14.5
Dust/AC ratio	0.85	0.95	0.8	0.99	1.0	0.83	1.1
RAP (%)	15	16	15.5	18	15.5	0	0
H: F	Highway;	A :	Airport;	*: S	Superpar	ve 5;	

Binder Mixes

MIX ID	AB1	PAB1	PAB2
Design Specification	IDOT Airport	IDOT Airport	FAA
Gyration	30	30	75
Binder PG	64-22	64-22	64-22
NMAS (mm)	19.0	19.0	19.0
Friction Grade	N/A	N/A	N/A
Lithology	50% Limestone 50% Gravel	100% Limestone	100% Limestone
Binder Content (%)	6.0	6.2	5.7
Air Void (%)	3.9	4.0	3.5
VMA (%)	14.9	15.2	14.3
Dust/AC ratio	0.85	0.95	1
RAP (%)	15	16	20

AB: Airport binder; **PAB:** Plant airport binder

Test Results- HWTT (Plant Mixes)

7.0% AV

4.0% AV

PH: Plant highway surface; PA: Plant airport surface; PAB: Plant airport binder

"Where Excellence and Transportation Meet"

7.0% AV

4.0% AV

Mix	# Passes	Rut depth (mm)	Passes to 12.5 mm
PH1	7,500	2.5	>20,000
PH2	7,500	2.2	>20,000
PH3	7,500	2.5	>20,000
PH4	7,500	2.3	>20,000
PA1	7,500	4.7	>20,000
PA2	7,500	Failed (17.6)	6,244
PA3	7,500	Failed	4,768
PA4	7,500	3.4	>20,000
PAB1	7,500	5.4	>20,000
PAB2	7,500	2.9	>20,000

Mix	# Passes	Rut depth (mm)	Passes to 12.5 mm
PH1	7,500	0.9	>20,000
PH2	7,500	1.1	>20,000
PH3	7,500	1.5	>20,000
PH4	7,500	1.7	>20,000
PA1	7,500	3.2	>20,000
PA2	7,500	6.7	10696
PA3	7,500	Failed (17.5)	6,426
PAB1	7,500	4.1	>20,000

7.0% AV

4.0% AV

Mix	# Passes	Rut depth (mm)	Passes to 12.5 mm
H1	7,500	6.1	10,920
H2	15,000	4.7	>20,000
H3	7,500	6.4	13,560
H4*	7,500	4.8	15,926
H5*	7,500	5.0	14,492
A1	7,500	Failed (>15)	4,608
A2	7,500	Failed (>15)	3,170
AB1	7,500	5.6	>20,000

Mix	# Passes	Rut depth (mm)	Passes to 12.5 mm
H1	7,500	1.2	>20,000
H2	15,000	4.0	>20,000
H3	7,500	4.6	13,742
H4*	7,500	3.0	>20,000
H5*	7,500	3.4	15,938
A1	7,500	Failed (>15)	6,353
A2	7,500	Failed (>15)	4,894
AB1	7,500	2.5	>20,000

H: Highway surface; **A:** Airport surface; **AB:** Airport binder;

"Where Excellence and Transportation Meet"

[&]quot;Where Excellence and Transportation Meet"

Test Results - TSR (Plant Mixes)

PH: Plant Highway PA: Plant airport

Test Results - TSR (Lab Mixes)

H: Highway surface; A: Airport surface; AB: Airport binder

Performance Ranking (Plant Mixes) HWTT

Indirect Tensile Strength

Tensile Strength Ratio

Performance Ranking (Lab Mixes) HWTT

Indirect Tensile Strength

Impact of Air Voids

0.0

0

5

7% AV

10

15

◆ UÁ ■ LTA

20

25

Summary

	Lab M	ixes	Plant Mixes		
Mix Type	Highway	Airport	Highway	Airport	
Rut depths (mm)	4.8 – 6.1	5.6 - > 15	2.2 – 2.5	4.7 – 17.6	
Tensile Strength (psi)	130 – 179	89 – 115	163 – 214	90 - 140	
TSR	0.91 – 0.93	0.88 - 0.99	0.9 - 0.92*	0.86 – 0.97	
Fracture Energy J/m ²	2194 – 2739	1808–2102	1887 – 2498	1827 – 2286	
Unaged FI	8.6 – 14.2	17.8 – 24.2	9.1 – 15.4	8.9 - 14.7	
Aged FI	4.2 - 8.4	7.9 - 8.5	4.6 - 8.5	4.6 - 9.0	

*Two plant mixes had TSR values of 0.8 and 0.82

Summary

- Use of highway surface mixes in airport applications (compared to airport mixes)
 - Less rutting potential and higher split tensile strength
 - Similar TSR and fracture energies
 - Highway mixes had good FI values
 - Superpave5 mixes H4* and H5*
 - Can achieve high field density >95%
 - \circ $\,$ Had less rutting and cracking potential $\,$

Conclusions

- Adoption of highway mixes in nonprimary airports is viable and have the following advantages:
 - Environmental benefits through the use of RAP
 - Technical advantages
 - Proficiency
 - \circ Expertise
 - Economic gains
 - Available and readily produced materials
 - More eligible contractors

Recommendations

- Review of compaction data to ascertain the feasibility of achieving high densities for nonprimary airport applications.
- Possible modification of thresholds to meet airport needs.
- Using SMA with local aggregates for nonprimary airport applications may be evaluated for future use.

THANK YOU Any Questions?

Presenter: Uthman M. Ali Email: uthmanm2@illinois.edu <u>Illinois Center for Transportation</u> in

Test Results- HWTT (Lab Mixes)

7.0% AV

4.0% AV

H: Highway surface; **A:** Airport surface; **AB:** Airport binder;

H: Highway surface; **A:** Airport surface; **AB:** Airport binder;

"Where Excellence and Transportation Meet"

H: Highway surface; **A:** Airport surface; **AB:** Airport binder;

"Where Excellence and Transportation Meet"

H: Highway surface; **A:** Airport surface; **AB:** Airport binder;

"Where Excellence and Transportation Meet"

Project Timeline

Project Milestones		2	021	2022		2023			% Completed		
		8-9	10-12	1-3	4-6	7-9	10-12	1-3	4-6	7-8	% Completed
1	Literature Review										100
I	Completed										100
C	Specification Comparison										100
Ζ	Completed										100
	Material Acquisition										
3	Phase 1 Completed										100
	Phase 2 Completed										
Λ	Mix Design and Testing										100
4	Completed										100
5	Final Report										90
5	In progress										30