
Lecture 2 : Universality Classes of Nonlinear Networks L
-

Let's use the same strategy as last time to compute
moments for a nonlinear network

.

New things!
-

· allowe for Gaussian Ginses
,
IE[6i] = 0

, E[bi6; 7 = C dij
· two common examples for o(z) are

- ReLU ("rectified linear unit") o(z)=-max /0
,
2)

-

0(z) = tanh(z)

will see that these belong to different universality classes
of network behavio

Recall the NN Forward equations :

2" = 6 ! + Wi;x;, z !" = 6 ,
+ + Wi;

(t)
o(z!)

We start by computing the 2-point function :

#Szi! Zie] = IECD !"- Wis"s, in (6"+Wire ind
[Cross-teres vanish since ward b are independent]

I=Kot  a; ar
Fin
-

6
, 2

:

call this the first-layer metric
-

II ((D) (1)
A similar calculation yields ([22227 con. 0 : Firstlage

distribution P(218) is Gaussian to 0(I) . If we wanted
,

we could write this distribution as an adi ,

p(2 18)
= Lantants expl-I 6 "! l

d

whic is correct to 0(1) .

inverse metric
-



2
An identical computation gives the layer-to-laser marginal

L

distribution with which we build the recursion
,

P(2
+ +x/z(e)=-

range
exP(-2Diet

where -+ -Ee is a stochastic variable

"O(a)
[13Since it depends on the random variables z'

,
zer,... z

In other words
, marginal distributions are Gaussion with a

stochastic corcrince matrix
,
which results in accumulated non-banssimnities-

in p(2xe+)(8)
To determine the recursion

,
we integrate out the It layer preactivations.

this is analogous to one step of RO Flow.

P(ecet 18) = (I dz! p(2"(2"(p(ze((0)
We can now feel free to build up places) from its moments .

& (1)starting with l=2: IEC2",n
,
2!= iizlE 28 ar] = Fiiz(o+(w[0

,
!↑ ↳

-
expectation take over onl over I'll e copies ofsame
2" and 2

(2)
sinst-newan

expectation

=Jiriz (Cot Lu!"
-)

a

If we let Gr IECEat and take The
Gaussian expectation

w
. r.

t. Covariance Gill
agatz IE22"!, ziricr7 : Divis bar

,
we have the recursion
-

~for 12, IECO(e) I egx] isI Ge Lot EmOr acat Gaussian to 0(I)



we can derive criticality conditions in the ne00 limit
.
↳

(1+ 1)
Let (in G = K

,

so our recursion is Ka =+~(0
,spene

If o is nonlinear
,

e. g. 0(2) = 22
,

we have

k'=+ En Zazka= + <w (KK +2(k))
-

operator mixing
unde R6 !So unlike in linear extracks we have to conside the whole

2x2 K matrix
,
rather than just a single input .

The diagonal component is easy because it decouples'

Koolt" =

(s+([0](x) =4 + [teSdz envi
-

g(K) :
single-variable Gaussion

expectation
Find a fixed point K8G linemizing : Kol Kot Kol

(1+1)
To first orde in D

:
DKr = X(ko) Koo

Il

(n9'(k) = E 201wh(e k) >
x

To ensure we don't move away from the fixed point, our first

criticality condition isMM)= 1

Note : When 0(z)= 2
, G'(K) = 1

,
So we recove (wil From last time

.

If C
: 70, we have K. = Co+ Koo = > Koo grows linearly

↳ semi-critical Fixed point at infinity
,

so should rather choose ( = 0
.



The constancy of Koo (EC X, =1) ensures that norms of ↳

preactivations don't change exponentially.
The ofdiagonal

components of K measure changes to nearby inputs . Requiring
that these also not change exponentially gives a second criticality
condition

.

Derivation is long but straightforward :
Ec a decomposition of

Kas Bat diagonalizes the R6 evolution
,
and linearize about

a fixed point .

=) require XLIK
*)1

,

Where XCK)= Lw <Old
x

To summarize :

criticalits=7
xx = 1
= =1

,
solve for Cand In

x+
= 1

TencenI [ =I
/

Loz)23 KA

Note :

not every activation Function has a consistant solution !
C

. 9. O( = Fe-z

I
Used historically ...

but criticality implies =- (a) <o
and a negative variance is unphysical. The problem is old %o!



The criticality equations can be solved numerically
,

or by
↳

inspection .
Different values of Ke correspond to different

universality classes :
-

· Scale-invariat (i. e - piecewise-linear w/o(0) = 0)

& Slope at

#2
= k5 = a ( * - E ]

M When 2:0 and (n Fae
Slope a _ KA is costent as a function of depth :

a line of nontrivial fixed points corresponding
to different input norms.

Linear activation has asia- =1 = > Lurl as we found before
.

ReLU has a
.

= 0
,

a
+

= 1 =
) Cr = 2

,
to compasate for the

fact that Max /0
,
2) knocks out half the activations on arrage .

· K S
= 0 : consider a Smooth activation Function

o(z)= z

=C <0Yz)
x

= 0 + (0,+ 20
. 021K + OCKY)

=> K
*

= + (w[ophas a solution
, K = 0

,
iff Gr = 0

and ( = 0
.

Linearizing X,
and N about 2=0 and expanding in K

,

↓we Find (w=
or

· For oczitanh 2
, 0 : 1

,
and Lu= 1

.



↳
In the K

*
=0 universality class

,
K decays to 0

/

but only like a power law . Linearizing the recursions

gives K= Se For tach (and #x+ For other activations)
,

up to &(iv) corrections . In other words
,
K is marginally inerant .

-

Fluctuations
-

Using the same techniques as before we can deive recursions

for the point correlator · Non-Gaussimits comes from both

#[18-612 and def(254)
,
his is a long calculation .

For a single input, let's call the coefficient of the wick

tensor structure V(weat to remind us of a -point vertext.

Recursion is (11) = XCK") Vie-Cuorul-caics]
Amazingly

,
twing (w to criticality tames exponential behavior

of V(el too!

· Scale-invariat
:

VI=(-1) (A) (KOP (marginall relevati
· KB =

0 : +(e) = (H) (i) (marginally irrelevat)

Note that we can assign a power-coming dimension to 2
.

[K] = 2 and [V] = ↑
, so the dimesionless correlator is

ro(t)
ru

Fr
~ I forbt niversality classes!



This is the same linear growth of Flustrations we I

saw in a linear retruck
,
but now we know it also

characterizes Molinear networks
.

-

Carcat : with ortogonal initializations
,
Er is

constant with l for K =

O
, but scales as #

for scalerinat
, exept linear activations which give

v constant with depth .-

kn

= K
*

= 0 is linearizing an activation function at

large depths, so nolinear networks sort of behave linearly.


