Lecture 1: Introduction, criticality in linear networks
Based on Roberts and Haida, Principles of Deep Learning Theory, 2106.10165 Why study neural networks? Flexible, differentiable class of functions with which to perform tasks like regression.

Data \rightarrow affine transformation \rightarrow nonlinearity \rightarrow Output repeat many tines

In equations: $z_{i}^{(1)}=b_{i}^{(1)}+W_{i j}^{(1)} x_{j}$

$$
z_{i}^{(l+1)}=b_{i}^{(l+1)}+w_{i j}^{(l+1)} \sigma\left(z_{j}^{(l)}\right)
$$

T^{9} harlineor) activation function,
width n
 applied elemat-ubse

$$
\left\{\begin{array}{l}
\text { output is a function } \\
f(x, \theta) \text { parameterized } \theta \text {, } \\
\theta=\left\{b^{(l)}, w^{(c)}\right\}
\end{array}\right.
$$

In supervised learning, newal networks are trained by comparing the NN output to a desired output and updating the parameters by some form of gradient descent.
Key fact: these networks are massively overparameterized.
A standard bexhmark dataset has 50k elements.
A standard "architecture" has width 256, depth $S \Rightarrow 300 \mathrm{~K}$ paras.

How con you possibly aroid "overfitting" your data with so many parameters. This is one of the alluring mysteries of neural networks: somehow, they work!

3 physics analogies to keep in mine:
1, the initial choice of parameters is random, so NN's should be seen as elerents of an ensemble. The statistics of this ensemble simplify as $\#$ of paras $\rightarrow \infty$, just like in stat mech.
2. The flow of information from input to output is like RG flow from UV to IR. The NN equations are recursions, So look for fixed points \Rightarrow criticality (lack of exponatial behavior of correlation functions) (lectures 1-2)
3. There is an object called the NTK which acts like a Hamiltonian, governing updates of observables after one step of training. We con correct statistics at initialization to statistics at end of training if we con find a derivative of the NTK which is frozen doing training (lecture 3)

NN ensemble.
In principle, 3 sources of randomess: initialization, data (drown fran some data distribution), training (egg. stochastic gradient descent).
To simplify be analysis, we consider ans initialization as condom. Goal is to compute $p\left(f\left(x, \theta^{B}\right) \mid \mathcal{D}\right)$, the distribution over trainee actuorks when θ^{B} we the optimal parameters given training data $\alpha \theta$. well warm up by first computing $p(f(x ; \theta) \mid d \theta)$ before un, training.

Formally, since the output is given by $2^{(b)}$ for a network of depth L, we have $p(f)=p\left(z^{(L)} \mid \theta\right)=\int \prod_{\mu=1}^{p} d \theta_{\mu} p(\theta) p\left(z^{(L)} \mid \theta, \theta\right)$
\uparrow leternnistic, given
But because NN's have an iterative lager-to-laper by iteration eau.
structure, will be easiest to Marginalize over layers one at a tine:

$$
p\left(z^{(l+1)} \mid g\right)=\int \pi d z_{i}^{(l)} p\left(z^{(l+1)} / z^{(0)}\right) p\left(z^{(l)} \mid d\right) \text {. }
$$

which is a recursion with initial condition

$$
p\left(z^{(1)} \mid \partial \theta\right)=\int \pi d b_{i}^{(1)} d w_{i j}^{(1)} p\left(b^{(1)} p\left(w^{(1)}\right) \delta\left(z_{i}^{(1)}-b_{i}^{(1)}-w_{i j}^{(1)} x_{j}\right)\right.
$$

For simple $p(6), p(w)$ (i.e. Gaussian distributions), it twas out the marginal distributions, and hence $p(2)$, are pertwbativels Gaussian, with non-Gaussianities scaling as $\frac{1}{n}$. Can therefore borrow all of the tools from stat. field theory to compute expectation!

Toy model: Linear network
Take $b_{i}^{(l)}=0, \quad \sigma(z)=2$. This is literally successive multiplication by a condom matrix. Output is alums a linear function of input, but a highly nonlinear function of parameters (matrix entries), So there is still rich structure at initialization that will carry over to the non linear case.
Anticipating the nearly-Gaussian statistics, instead of computing $p(z \mid 8)$ directly, we will compute its first few connected moments.

Take our weight matrix entries to be i.i.d. Gaussian;

$$
\mathbb{E}\left[w_{i j}\right]=0, \quad \mathbb{E}\left[w_{i, j_{1}} w_{i_{2} j_{2}}\right]=\frac{c_{w}}{n} \delta_{i, i_{2}} \delta_{j_{i, L}}
$$

(for simplicity, same width n and save weight distribution in each (ser)
Let $\mathcal{g}=\left\{x_{i, \alpha}\right\}$ where α is a sample index. Then

$$
P\left(z^{(l)} \mid \alpha\right)=P\left(z_{i ; \alpha_{1}}^{(c)}, z_{i ; \alpha_{2}}^{(c)}, \ldots z_{i ; \alpha_{N_{\omega}}}^{(c)}\right) w z_{\alpha} \equiv 2\left(x_{\alpha}\right)
$$

Easy things first all odd moments vanish
e.9. $\mathbb{E}\left[z_{\alpha}^{(1)}\right]=\mathbb{E}\left[W^{(1)} W^{(l-1)} \cdots W^{(1)} x_{\alpha}\right]$ (dropping indices fo clarity)

$$
\begin{aligned}
&= \mathbb{E}\left[W^{(1)}\right] \mathbb{E}\left[W^{(1-1)}\right] \cdots \mathbb{E}\left[W^{(1)}\right] x_{\alpha} \text { (each lasers weights } \\
& \text { wee independent) } \\
&=0 \text { (weights are nean-zer) }
\end{aligned}
$$

First nontrivial roman is

$$
\begin{aligned}
& \mathbb{E}\left[z_{i, i \alpha_{1}}^{(1)} z_{i, 2 \alpha_{2}}^{(1)}\right]=\mathbb{E}\left[W_{i, j}^{(1)} x_{j ; \alpha_{1}} w_{i_{2} i_{2}}^{(1)} x_{j_{2} ; \alpha_{2}}\right] \\
& =\mathbb{E}\left[w_{i, j}^{(1)} w_{i_{2}, 2}^{(1)}\right] x_{j_{1}, \alpha_{1}} x_{j_{2} j \alpha_{2}} \\
& =\frac{C_{w}}{n} \delta_{i_{1} i_{2}} g_{j_{1 j 2}} x_{j_{1}, \alpha_{1}} x_{j i j x_{2}} \\
& =C_{w}(\underbrace{\frac{1}{n}} \vec{x}_{\alpha_{1}} \cdot \vec{x}_{\alpha_{2}}) \delta_{i, i v} \\
& G_{\alpha_{1} \alpha_{2}}^{(0)} \equiv \text { covariance btu. two inputs }
\end{aligned}
$$

Note this is diagonal in neural indices: no covariance btw. neurons 1 and 2 Now write a recursion for 2 -point corcllator in loser l, with the ansutz $\mathbb{E}\left[2_{i, i, \alpha_{1}}^{(1)} 2_{i, i, \alpha_{2}}^{(l)}\right]=G_{\alpha_{1} \alpha_{2}}^{(1)} \delta_{i_{1, i}}$. Our initial condition is $G_{\alpha_{1} \alpha_{2}}^{(1)}=C_{w} G_{\alpha_{1} \alpha_{2}}^{(0)}$.

Continuing, $\mathbb{E}\left[z_{i 1}^{(l+1)}, z_{i, \alpha_{1}, \alpha_{2}}^{(l+1)}\right]=\mathbb{E}\left[W_{i, j_{1}}^{(l+1)} z_{j_{1}, \alpha_{1},}^{(1)} W_{i_{2} j_{2}}^{(l+1)} z_{i_{2}, \alpha_{2}}^{(e)}\right] \quad 5$ Kep point, $z^{(l)}$ only depeds on $W^{(1)}, W^{(1-1)}, \ldots$, So is statistically, independent from deeper layers, including $W^{(l+1)}$

$$
\begin{aligned}
& =\mathbb{E}\left[W_{i, 1}^{(l+1)} W_{i i_{i, 2}}^{(1+1)}\right] \mathbb{E}\left[2_{i, \alpha_{1}}^{(1)} z_{i, \alpha_{2}}^{(l)}\right] \\
& =\frac{C_{w}}{n} \delta_{i, i,} \delta_{j, i 2} \sigma_{\alpha, \alpha_{2}}^{(l)} \delta_{j j_{2}} \\
& =C_{w} G_{\alpha_{1} \alpha_{2}}^{(1)} \delta_{i_{1,2}}
\end{aligned}
$$

So our ansate is consistent, and the 2 -point recursion is

$$
G_{\alpha_{1} \alpha_{2}}^{(l+1)}=C_{w} G_{\alpha_{1} \alpha_{2}}^{(l)} \quad(l=0,1, \ldots)
$$

Solution: $G_{\alpha_{1} \alpha_{2}}{ }^{(1)}=C_{w}{ }^{l} G_{\alpha_{1} \alpha_{2}}{ }^{(0)}$
We con also sum over i, ir in our ansate to find $G_{\alpha_{1} \alpha_{2}}^{(1)}=\frac{1}{n} \mathbb{E}\left[\vec{z}_{\alpha_{1}}, \vec{z}_{\alpha_{2}}\right]$ $\Rightarrow G_{\alpha_{1} \alpha_{2}}^{(1)}$ is a covariance at layer l, and blows up exponentially wt th depth if $C_{w}>1$, or shrinks exponetralcy if $C_{w}<1$.

Can tune the return to criticality by choosing $C_{w}=1$ in which case $G_{\alpha_{1, \alpha}}^{\infty} \equiv G_{\alpha_{1,2}}^{(0)}$ is a fixed point of the G recursion. Input covariance is preserved during propagation through be return.
(Very) surprising fact about NN;: this tuning is sufficient to prevent exponential behavior of all higher-point correlates, and tace the full $P\left(z^{(0)} \mid \mathcal{D}\right)$

4-point recursion (briefly!)! start aah lager 1,

$$
\begin{aligned}
& \text { Set } \alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4} \equiv \alpha \\
& \mathbb{E}\left[2_{i 1}^{(1)} 2_{i 2}^{(1)} 2_{i 3}^{(1)} 2_{i 4}^{(1)}\right]=\mathbb{E}\left[W_{i, j_{1}} w_{i i_{i 2}} w_{i 3 j 3} w_{i+j 4}\right] x_{j_{1}} x_{j_{2}} x_{j_{3}} x_{j_{4}}
\end{aligned}
$$

Wick's Theorem giver this in terms of C_{n} :

$$
\begin{aligned}
& \frac{C_{w}{ }^{2}}{n^{2}}\left(\delta_{i, i} \delta_{j, i v} \delta_{i j i 4} \delta_{i 3 j 4}+(2 \text { mere cintractios })\right. \\
& =C_{w}{ }^{2}\left(\delta_{i, i \downarrow} \delta_{i 3 i 4}+\delta_{i, i 3} \delta_{i i_{i 4}}+\delta_{i, i 4} \delta_{i i_{i}}\right)\left(G_{2}^{(0)}\right)^{2} \\
& \equiv G_{\alpha \alpha}^{(0)}
\end{aligned}
$$

This is precisely the structure of a wick contraction, so can subtract off 2 -point correlators to find $\begin{aligned} \mathbb{E}\left[2_{i,}^{(1)} 2_{i 2}^{(1)} \nu_{i 3}^{(1)} 2_{i 4}^{(1)}\right]_{\text {conn }}=0< & \text { Gaussian up to qu monet, } \\ & \text { in First layer }\end{aligned}$
However, non-Gaussimities get generated in deeper layers.
Taking the ersatz $\mathbb{E}\left[z_{i 1}^{(1)} z_{i 2}{ }^{(1)} z_{i 3}{ }^{(1)} z_{i 4}{ }^{(1)}\right]=G_{4}^{(1)}\left(\delta_{i, i l} g_{i_{i /}}+(2\right.$ sim $\left.)\right)$ compute $\mathbb{E}\left[2^{(+f)} 2^{(+1)} 2^{(1+1)} 2^{(1+1)}\right]$ to derive the recursion $G_{q}{ }^{(l+1)}=C_{w}{ }^{2}\left(1+\frac{2}{n}\right) G_{4}{ }^{(l)}$. Has a closed-form solution, Gut instead let's expand pectorbutivery in $\frac{1}{n}$:

$$
\mathbb{E}\left[2^{4(l)}\right]_{\operatorname{com}} \times G_{4}^{(l)}-\left(G_{2}^{(l)}\right)^{2}=\frac{2(l-1)}{n}\left(G_{2}^{(l)}\right)^{2}
$$

At criticality $\left(C_{m}=1\right)$, corrected 4-pt. grows lincoly with depth: $\mathbb{E}\left[2^{4(l)}\right]_{\text {conn. }} \times \frac{2 l}{n}\left(G_{2}^{A}\right)^{2} \leftarrow$ Marginally relevant

Some final comments:

- as $n \rightarrow \infty, 4 n$ and higher cumulates vanish: $P\left(z^{(1)} \mid \not D\right)$ is purely Gaussian.
' as $L \rightarrow \infty$, combinatorial factors eventually, grow and spoil criticality. "Infinite size" limit is $1 \rightarrow \infty$, ot $L \rightarrow \infty$
- for Gaussian inits, $\frac{L}{n}$ appears as the cutoff of the effective theory. (Not true for other inits in general!)
- There is a closed-form expression for single-iput $p\left(z \mid x_{\alpha}\right)$.'

$$
p\left(2^{(l)} \mid x\right) \propto G_{0, l}^{l, 0}\left(\left.\frac{z^{(l)} \cdot \Sigma^{(l)}}{2^{l} n C_{w}^{c} G_{2}^{(c)}} \right\rvert\,-, \ldots 0\right) \quad[2104.11234]
$$

depth Reperdece
encored in Meier
6 -function

- if we take our weight matrices to be orthogonal, distainuel under be Haar measure on $O(n)$,

Duh. $O(n)$ preserves norm, so just a cordon rotation on the $(n-1)$-sphere. But expand petwrativels:

$$
\mathbb{E}\left[2^{f(l)}\right]_{\text {conn }}=-\frac{2}{n}\left(G_{2}^{(0)}\right)^{2} \text { independent of } l \text { : }
$$

no $\frac{1}{n}$ cutoff!
Exactly marginal.

