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Lecture 1 : Introduction

, criticality in linear networks
-

Based on Roberts and Yaida
,
Principles of Deep Learning Theory, 2106. 10165

Why study veual networks? Flexible, differentiable class of

functions with which to perform tasks like regression .

Data -> aftire transformation -> nonlinearity -> output
e

repeat many times

In equations :
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In supelearning ,

recal networks are trained by comparing

the NN output to a desired output and updating the parametes

by some form of gradient descent.

key fact : These networks are mirely overparameterized .

A standard benchmark dataset has 30k elemets.

A standard "architecture" has widt 296
, depth 3 => 300k paras .
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How can you possibly avoid "overfitting" your data

with so L
many parameters? This is one of the allwing mysteries of

neural networks:
somehow

, they work!

3 physics analogies to keep in mind :

1 . the initial choice of parameters is random
,

so NN's should be

seen as elements of ar exemble .

The statistics of this ensemble

simplify as # of parars -> %
,
just like in stat mech .

2
.

the flow of information from input to output is like

RC flow From UV to IR
. The NN equations are recursions

,

So look for fixed points => criticality (lack of exponential
behavior of correlation functions) (lectures 1-2)

3
.

treme is on object called the NTK which acts like a

Hamiltonian, governing updates of observables after one step
of training

.
We can correct statistics at initialization

to statistics at end of training if we can find a

deivative of the NiK which is Een during training
(lecture 3)

.....

NN ensemble.

In principle, 3 sources of randomness
: initialization

,
data (nan from

some data distributions
,
training (e. g- stochastic gradiat descett.

To simplify the analysis
,

we conside o initialization as random . Goal

is to compute p(f(x; 88)(5), tre distribution over trained retworks

where *
are the optimal parametes given training datan I.

We'll warm up by first computing Plf(x; E) 1551 before any training.



Formally
,
Since the output is given by 214 for a netrat of deptet,

P

we have P(f) = P(210) =

(I, d= P(0) pl2 18,
()

↑
deterministic

, given
-

by itention eqe.But because NNs have an itentive layer - forlage structure
,

will be easiest to marginalize over layers one at a time !

p(2)(8) = ) Tdz! p(2(2) p(2" (8)
,

which is a sesion with initial condition

p(2
" 18) = ) I d6 !" dW" P(b") p(W") & (2! -6!

- Wi;"X;)

For simple p(6) , plus (i. e.
Gaussian distributions)

,

it turns out

the Marginal distributions ,
and hence p(z), are petulatively

Gaussion with non-Gaussianities scaling as . Can therefore
-

borrow all of the tools from stat. Field theory to compute

expectations !
......

Toy model
: linear network

Take 6, = 0
,
0(2) =

2
.

This is literally successive multiplication

by a random matrix . Output is always a linear function of

input, but a highly nonlinear function of parameters (matrix entrics)
,

so there is still rich structure at initialization that will

carry ove to the nonlinear case .

Anticipating the nearly-baussian statistics
,
instead of computing

P(218) directly, we will compute its first few connected

moments .



Take our weight matrix entries to be ii.d
. Gaussian

: I
IIECW ,; ]

= 0
,
E [Wi

,
Winir]= i

, in sin

Hor simplicity, same width , and same weight distribution in each laye)

Let 8 : Ex ;;<3 where a is a sample index
.

Then

P(2" (N) = P(2"!, -, 2 . . . - z!, (n)wz = z(xn)

Easy things First: all old moments wish

e
. g . IE[I]= EEC Wi Wie -1 ... Wax

<
] (dropping indices for clarity)

= IECWYECWCety ... ECW" xo Leach layer's weights
we independent)

=0 I weights are mean-zerol

First nontrivial moment is

#Cz";, zc)= CWi; icWit Xini
= IECW !" Wins! *
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=
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, jeXisn *ric

-(w(I Y,,)22
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e

Can = covariance btw
.

two inputs
Note this is diagonal in neural indices

:
no covince btw. neurons land 2

Now write a recursion for 2-point correlator in laser l
,
with the

ansatz IE 22 "in
, 2 Yert = Ge

can iiz
.
Our initial condition is

Can Lu Gar



Continuing
,
EC2""

,
2"]= EEW! 2, Wi 2!

or
I ↳

key point: I'l only depends an
Wi

,
Wir,..., so is statistically

independent from deeper layers, including Wit

= ECW?" , Wi! IE22!. 2and
= din; 6 see (ansatzl

a , x2 jijz
-

Tr(-) =

1

197
- Lu Gaaz This

So our ansatz is consistent, and the 2-point recursion is

Ge Cuba (e=0, ... )

Solution
:

Gaid- Lu Gale
we can also sum over is in in

our asate to find Gar IESZs
:
Zort

(e)
= Gar is a covariance at layer e, and blows up exponentials
with depth if (n>1, or stinks exponentials if (w<I .

Can tune the network to criticality by choosingTM=1
,

in which case 62= Gas is a fixepoint of the Grecursion
.

Input covaince is preserved during propagation through the network
.

Ney) surprising fact about NNs : This tuning is sufficiet

to prevent exponential behavior of all higher-point correlators,
and have the Full P(2" (10)



↑-point recursion (briefly !) :
Start al Langer I ↳

Set 2 = ar
=

< =

Ca =

ECz"z"z"2"! - # (Wis
,
Wirin Wiss , Wirjp]X; , XizYis *

sa

-
Wick's Theorem gives this in terms of <n !

i
, indijedisipdizipt (2 more contractions)

=Lu (indisint in ript iia icisI sig62
I

= Gl
This is precisely the structure of a Wick contraction

, so

can subtract of 2-point correlators to find

ECz"2"nz"2"Do= O & danssio up to the momet
,

in first layer-

Howeve
,
non-Gaussimnities yet generated in deeper layers.

Taking the ansatz IEC2!"Zizis Zip = Ga (iindizipt(sins)
,

compute #I2' Whethe quig to deive the recursion

6pet) = (v) It ) Ge
.

Has a closed- form solution
, fut instead

let's expand perturbativel in I ?

E[24 Jan
.

66 -(6) = (6)

At criticality ((m=1)
,
corrected ↑-pt. grows lines with depth !

#EC2
*Jo

. 2162)2 & marginally relevant



some final comments ! E

· as 1 -,
th and higher cumlats raish :

P(21 18) is purely Gaussion .

·
as L-0 ,

combinatorial factors eventualls grow and

spoil criticality . "Infinite size" limit is 100, Lea

· for Gaussian inits, I appears as the cutory of the

effective teay . (Not true for other inits in general !

there is a closed form expression for Single-input P(z/X.) :

p(2"(x) = 68% (en 10... ) [2100
. 11734]

*

depth dependence
encore in Meijer
6-function

· if we take our weight matrices to be orral
,
districted

under the Haar measure an O(,

P(2" (x) & (2) .2) -F .R) (YK
,
Heral Day

,
D

. Roberts]

Duh . O(n) preserves norm
,
so just a random rotation on

the (n-1)-sphere .

But expand petubatively :

EC zeTim = -(6):

independent of :
no cutoff!

Exactly marginal.


