PHYS211 Exam 1 Prep

Newton's Laws

- 1st Law: Velocity of an object is constant if the sum of forces on the object is zero, F=0 ⇔ dv/dt=0 ⇔ a=0 (Inertia)
- 2nd Law: The net force on an object is equal to its mass times its acceleration, F=ma
- 3rd Law: Any forces acting on an object will have an equal and opposite reaction, F_{a,b} = -F_{b,a}
- These equations are true for all interactions in Phys 211! Note that the forces and acceleration are vectors; direction matters.

1-D, 2-D Kinematics

• Equations associated with Kinematics:

○
$$\mathbf{v} = \mathbf{v}_0 + \mathbf{a}t$$

○ $\mathbf{r} = \mathbf{r}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{a} t^2$
○ $\mathbf{v}^2 = \mathbf{v}_0^2 + 2 \mathbf{a} (\mathbf{x} - \mathbf{x}_0)$

Relative, Circular Motion

- The Centrifugal force is a fictitious force, meaning that it is a result of other forces acting on a system to make it go in circular motion
- Centripetal acceleration, for circular motion, is always radially inwards and the velocity is tangential to the path.

Kinematics

6

- Projectile Motion
 - X direction: v is constant, a = O
 - Y direction: v at top = 0, a = g
 - Remember, time is the same in both x/y
 - Break up velocity into components if needed

Circular Motion

- Acceleration always points inward
- v = wr (and is tangential to path)
- Direction of individual forces can be different at different positions of the circle

Conservative

- Weight (gravity)
- Spring Force: $F_s = -k \Delta x$
- Potential Energy diff

Forces

- Nonconservative
 - Normal: Perpendicular to an object's surface by below surface
 - Tension: points away from object
 - Friction: $f = \mu N$, opposes motion

- Equal & Opposite Forces
- X and Y components still apply, especially for ramp problems
 Free Body Diagrams:

The net force is NOT drawn on the free body diagram
 Only draw external forces acting on the object

Kinematics

How to Identify:

- Projectile Motion
- Given v/x/a

Relative Motion

Kinematics

- List given variables
 - In both x and y directions
- Match up to kinematics equations on eqn sheet
- Remember to watch out for Relative Motion

Forces

How to Identify:

- Springs
- Mass Sliding

- Ramps
- Strings

12

<u>ALWAYS</u> start with Free Body Diagrams

- Write F=ma equations
 - In both x and y directions
 - Pay close attention to the <u>SIGNS</u> of your variables!
- Solve for the variable you're looking for

Worksheet Time!

_____ Enter Queue with your name and net ID: By entering the queue, you help us: -Reserve a big enough space at the next review session -Assign enough tutors for everyone to have access to help Thank you!

SCAN ME