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ABSTRACT

Microservices are emerging as a popular cloud-computing para-
digm. Microservice environments execute typically-short service
requests that interact with one another via remote procedure calls
(often across machines), and are subject to stringent tail-latency
constraints. In contrast, current processors are designed for tradi-
tional monolithic applications. They support global hardware cache
coherence, provide large caches, incorporate microarchitecture for
long-running, predictable applications (such as advanced prefetch-
ing), and are optimized to minimize average latency rather than
tail latency.

To address this imbalance, this paper proposes pManycore, an
architecture optimized for cloud-native microservice environments.
Based on a characterization of microservice applications, pManycore
is designed to minimize unnecessary microarchitecture and miti-
gate overheads to reduce tail latency. Indeed, rather than supporting
manycore-wide hardware cache coherence, yManycore has multiple
small hardware cache-coherent domains, called Villages. Clusters
of villages are interconnected with an on-package leaf-spine net-
work, which has many redundant, low-hop-count paths between
clusters. To minimize latency overheads, pManycore schedules and
queues service requests in hardware, and includes hardware sup-
port to save and restore process state when doing a context-switch.
Our simulation-based results show that pManycore delivers high
performance. A cluster of 10 servers with a 1024-core pManycore
in each server delivers 3.7X lower average latency, 15.5x higher
throughput, and, importantly, 10.4X lower tail latency than a clus-
ter with iso-power conventional server-class multicores. Similar
good results are attained compared to a cluster with power-hungry
iso-area conventional server-class multicores.
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1 INTRODUCTION

Cloud computing is undergoing a paradigm shift, as large mono-
lithic applications are being replaced by compositions of many
lightweight, loosely-coupled microservices [64]. In these “cloud-
native” workloads, each microservice is implemented and deployed
as a separate program, and executes a portion of the application’s
logic, such as HTTP connection termination, key-value serving [75],
protocol routing [93], or ad serving [29]. This composable appli-
cation design simplifies development and enables programming
language and framework heterogeneity. Additionally, each mi-
croservice can be shared among multiple applications, while being
scaled and updated independently of other microservices. This
new paradigm is being embraced by all the major cloud providers,
such as Amazon, Netflix, Alibaba, Twitter, Uber, Facebook, and
Google [10, 14, 28, 50, 51, 59, 72, 73, 81, 82, 84, 94]. In addition,
there is a proliferation of open-source environments that manage
microservice workloads (e.g., Kubernetes [42] and Docker Com-
pose [17]).

Microservice environments have new characteristics that impact
the system and hardware architecture of the platforms on which
they run. Specifically, requests for microservices in an application
are typically short-running and may execute on different machines.
Requests for different microservices share no memory state and
interact with one another via remote procedure calls (RPCs) [27, 38].
Further, requests have small working sets and are often invoked in
bursts, frequently waiting in queues before being executed. Finally,
the decomposition of an application places tight sub-ms latency
Service Level Objectives (SLOs) on individual services [74, 75]. As
a result, while reducing average latency and improving throughput
are important, the key performance target in these environments is
now minimizing tail latency [16] (e.g., improving the 99th-percentile
responses). Many of these characteristics are also found in emerging
deployment methods based on microservices, such as Function-as-
a-Service (FaaS) environments [2, 25, 33, 54].

Current processors are not expressly designed for these environ-
ments. Indeed, multicores invest significant hardware and design
complexity to support global hardware cache coherence. They have
large caches to capture the working sets of long-running appli-
cations. They are relatively unconcerned with supporting short-
running, RPC-communicating programs. Instead, they incorporate
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microarchitectural optimizations for long-running, predictable ap-
plications, such as advanced prefetchers and branch predictors.
These optimizations add significant hardware complexity and are,
at best, marginally effective for microservices. Perhaps most im-
portantly, current processors are highly optimized to minimize the
average latency of programs or transactions, and ignore tail-latency
considerations.

How should one change the design of processors so that they
match microservice requirements? First, some of the hardware opti-
mizations that introduce design complexity and are hardly needed
by microservices, such as global hardware cache coherence, should
be reconsidered. Second, there should be a comprehensive effort
to optimize for tail-latency reduction. Optimizations should tar-
get both inefficiencies affecting all requests, and contention-based
overheads that may affect a subset of requests. While the resulting
processor will not be competitive for general-purpose loads, it can
be the CPU of choice for microservice-heavy datacenters.

In this paper, we propose a processor architecture highly opti-

mized for cloud-native microservice workloads. We call it uManycore.

{tManycore is not an accelerator; it retains general-purpose proces-
sor capabilities, although it may not be as competitive for mono-
lithic applications.

To design pManycore, we start by characterizing production-level
microservice traces from Alibaba [50] and microservice applications
from DeathStarBench [23]. Our analysis shows that bursty service
requests create periods of high demand where long waiting queues
are likely to appear. In addition, requests spend most of their time
blocked, waiting for the completion of their accesses to storage or
their calls to other services. In the meantime, CPUs context switch
frequently, introducing overhead. Moreover, service-initiated mes-
sages between cores experience the latency of interconnection
networks (ICNs), often suffering contention delays that further
increase tail latency. Finally, while requests have small working
sets, microservices benefit from a large nearby pool of memory that
stores per-microservice read-mostly state.

Based on these findings, we design a chiplet-based pManycore.
Rather than supporting package-wide hardware cache-coherence,
pManycore is built with multiple small hardware cache-coherent
domains called Villages. Microservices are assigned to individual
villages. A few villages, together with a memory chiplet (storing
read-mostly state), are grouped in a cluster. Clusters are intercon-
nected with a leaf-spine ICN [12, 20]. This topology has many
redundant, low-hop-count paths between any two clusters—hence,
minimizing contention between multiple messages with the same
source and destination clusters and reducing tail latency. To mini-
mize scheduling overheads, pManycore enqueues, dequeues, and
schedules service requests in hardware. Finally, to minimize the
overhead of frequent context switching, cores include hardware
support to save and restore process state.

Our simulation-based results show that pManycore delivers high
performance for microservice workloads. We compare a 1024-core
{tManycore to two conventional server-class multicores: one with
the same power and one with the same area as gManycore. A cluster
of 10 servers with pManycores delivers 3.7x lower average latency,
15.5% higher throughput, and, importantly, 10.4x lower tail latency
than a cluster with the iso-power conventional multicores. Similar
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good results are attained compared to a cluster with the power-
hungry iso-area conventional multicores. Finally, on-package leaf-
spine ICN, request scheduling in hardware, and hardware context
switching are highly effective in improving the performance of
microservice workloads.

This paper’s contributions are as follows:

e A characterization of microservice workload behavior in conven-
tional processors.

e jiManycore, a processor architecture that is highly optimized for
microservice workloads.

e An evaluation of yManycore, comparing it to two conventional
server-class multicores: one with the same power and one with
the same area.

2 BACKGROUND AND MOTIVATION
2.1 Microservice Environments

In microservice environments (e.g., managed by Kubernetes [42] or
Docker Compose [17]), large complex applications are organized
as workflows of multiple interdependent services. Each service
executes a separate functionality, serves requests of its type, and
is deployed as a separate instance. Service requests often perform
reads and writes to remote storage, which are costly and may stall
program execution for a significant time.

Often, a service request invokes one or more other services
that perform simple operations and then aggregates the obtained
data. Studies by Alibaba [50] and Facebook [73] show that such a
multi-tier paradigm is popular in production-level microservice ar-
chitectures. Services communicate with each other via RPC/HTTP
protocols, such as gRPC [27] and eRPC [38]. When a service request
calls another service synchronously, it waits on the results before
continuing with its own execution. This operation also introduces
potentially significant stall times.

Individual microservices are significantly simpler than their
monolithic counterparts. They have a smaller memory footprint
and working set, less pressure on instruction fetching, and orders
of magnitude shorter execution time. However, in reality, these
environments have substantial performance challenges. Short ex-
ecution times and frequent, costly remote storage accesses and
communication between services induce overheads that cannot be
overlooked [11, 15, 32, 36, 55, 56, 61, 62, 74, 75, 77].

2.2 The Need for a Cloud-Native CPU

The ever-increasing complexity of software systems has kept push-
ing forward processor design. For example, researchers have pro-
posed numerous prefetching, branch prediction, and cache replace-
ment schemes. These proposals introduce custom microarchitec-
tural structures that increase processor area, power consumption,
and design complexity in order to improve application performance.

However, many of these optimizations hardly benefit cloud-
native microservice workloads. To validate this hypothesis, we
consider four published microarchitectural optimizations for which
the simulator and applications used in the publications are open
sourced. For each of the optimizations, we first run the original
applications [13, 60, 78, 79, 88] on the original simulator and record
the performance with and without the optimizations. The results
are depicted as bars Baseline and Optimized in Mono (for Monolithic)
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in Figure 1, normalized to Baseline. We then run a set of microser-
vice applications—SocialNetwork from DeathStarBench [23], and
Router and SetAlgebra from pSuite [74]—on the original simulator
and record the performance with and without the optimizations.
The results are depicted as bars Baseline and Optimized in Micro
(for Microservice) in Figure 1, normalized to Baseline.

ElBaseline
D-Prefetcher

[1O0ptimized

|-Prefetcher

Branch Predictor

I-Cache Replace

Mono. Micro. Mono. Micro. Mono. Micro. Mono. Micro.

Figure 1: Performance improvements of four recently-
proposed microarchitectural optimizations using monolithic
(Mono) and microservice (Micro) applications. For each op-
timization and application set, the bars are normalized to
Baseline.

The optimizations are as follows:

D-Prefetcher shows the impact of the Pythia reinforcement-learning
data prefetcher [8]. Pythia speeds-up monolithic applications by
19% on average over a system without a prefetcher. However, it
brings only marginal benefits of 2% to microservices.

Branch Predictor shows the impact of a perceptron-based branch
predictor [35]. The predictor speeds-up monolithic applications by
14% on average over a system with a simple g-share predictor. On
the other hand, the predictor speeds-up microservice applications
by only 1% on average over the g-share predictor.

I-Prefetcher shows the impact of the I-SPY context-driven in-
struction prefetcher [40]. The prefetcher speeds-up monolithic ap-
plications by 16% on average over a system without instruction
prefetcher. On the other hand, it does not speed-up microservice
applications.

I-Cache Replace shows the impact of the Ripple profile-guided in-
struction cache replacement algorithm [41]. The algorithm speeds-
up monolithic applications by 2% on average over a system with
LRU replacement. However, it does not bring any benefits to mi-
croservices.

The reason for the discrepancy in the effectiveness of the pro-
posed optimizations is the reduced data and instruction memory
footprint of the microservice workloads compared to the mono-
liths, as well as their increased cache hit rates and different branch
behavior. This data shows that a different type of processor mi-
croarchitecture is needed to speed-up microservice applications.

3 CHARACTERIZING MICROSERVICE
APPLICATIONS ON CURRENT PROCESSORS

To guide the design of uManycore, we first characterize the behavior
of microservice applications on current processors. We execute the
DeathStarBench [23], TrainTicket [96], and pSuite [74] open-source
microservice application suites, as well as real-world production-
level microservice execution traces from Alibaba [50]. Our main
conclusions are described next.
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3.1 Monolithic Cache Coherence Provides
Limited Advantage

To enable high availability, fast scalability, and fault tolerance, mi-
croservice applications are implemented as sets of services. Each
service is built as a standalone RPC/HTTP server—in our workloads,
a TThreadedServer [80], RestController [71], HTTPServer [24], or
gRPCServer [27]. Upon service instance initialization, network con-
nections are set up, libraries are loaded, and preparation code is
executed. Upon service request arrival, the service instance spawns
anew worker (a process, thread, or co-routine) or reuses an existing
one to serve the request.

Different services or different instances of the same service do not
share any modifiable memory. A worker can update its private state,
the local state of its service instance and, with RPC calls, the state
in global storage. This is in contrast to traditional multi-threaded
applications, where concurrently-running threads are often free to
share memory.

Given this environment, conventional monolithic hardware cache
coherence, as it is used in current large multicores, is hard to justify.
Cache coherence is only needed inside a service instance, which
typically uses only a few cores. One could argue that global co-
herence would still be needed if we allowed service instances to
migrate across any cores. However, unimpeded migration of ser-
vice instances across a large 1K-core multicore is unlikely to deliver
performance improvements and, in fact, is likely to increase tail
latency. Hence, given the well-known hardware complexity and
scalability challenges of large-scale hardware cache-coherence, it
is more reasonable to support only small-scale cache-coherence do-
mains among the cores used by individual service instances. Service
requests for a given instance can still migrate between the cores
used by the service instance if needed for load balance—resulting
in a more efficient environment.

3.2 Bursty Requests Increase Tail Latency

We use Alibaba’s production-level traces [50] to characterize the
arrival rate of service requests. The traces include requests directed
to 10,000 servers. In each server, service requests arrive in bursts,
creating periods of high and low request demands. Figure 2 shows
the CDF of the number of Requests per Second (RPS) arriving at
a server [85, 92]. We can see that a server that gets and processes
a median of ~500 RPS, sometimes gets multiple times these many
RPS—i.e., 20% of the time, it receives 1,000 RPS or more, and in 5% of
the time, it receives 1,500 RPS or more. When these large numbers
of requests are received, they have to wait in queues.

1.0
0.8
50.6
©0.4
0.2
0.0,

0 250 500 750 1000 1250 1500 1750 2000
Server Load (RPS)

Figure 2: CDF of Requests per Second (RPS) received by a
server.

Given this environment, it is important to design queuing sys-
tems that have minimal overhead. Previous proposals have consid-
ered a fully-centralized First-Come-First-Serve (FCFS) queue [36,
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61]. However, under high concurrency, such an approach induces
high synchronization overheads. At the other extreme, one can
have fully-decentralized FCFS queuing, with a per-core queue. This
approach is equally undesirable, as it leads to load imbalance and
head-of-line blocking.

Any suboptimal queuing structure will lead to increased average
response time for the service requests. Most importantly, it will
have a major impact on the tail response time.

To see this effect, we take the DeathStarBench applications [23]
and run them on a simulated 1024-core ScaleOut manycore (de-
scribed in Section 5). We issue requests using a Poisson distribution
with 50K RPS, on average. Figure 3 shows the average and tail
response time of the requests as we vary the number of queues in
the manycore. The leftmost point (1024) means that each core has a
dedicated queue, and the next one (512) that every two cores share
one queue, and so on. In the rightmost point, all cores share a single
queue. Requests are assigned to queues randomly. In addition, we
evaluate a system that allows a core to steal requests from other
queues when its assigned queue is empty.

§3K . ---- Tail —— Average ,
; \‘\ Tail WorkSteal —e— Average WorkSteal ///
£ 2K N B 4
[= Memee .
o 1K —e W=
2 *——o . o - o o . ° o—o
0 4 s 4 v v . 4 2 4 v v
1024 512 256 128 64 32 16 8 4 2 1

Number of queues in a 1K-core manycore

Figure 3: Average and tail response time of requests for dif-
ferent numbers of queues in a 1024-core manycore.

The figure shows that the average response time increases mod-
estly as we go from the best scenario (32 queues with 32 cores per
queue) to the worst ones (1024 queues or one queue). However,
the tail response time changes dramatically. With 1024 queues and
with one queue, the tail is 4.1x and 4.5 higher, respectively, than
the tail with 32 queues.

Work stealing significantly reduces the tail when the system has
one queue per core. This is because it mitigates load imbalance.
However, as we increase the number of cores per queue, and thus
reduce the load imbalance, work-stealing becomes less useful and
even increases the tail due to the added overheads. Work stealing
does not change the average latency.

3.3 Context Switching Hurts Tail Latency

We now use Alibaba’s traces to characterize the execution of service
requests. We find that requests are typically very short: 36.7% of
the dynamic invocations take less than 1ms; the geometric mean
duration of the remaining dynamic invocations is 2.8ms. In addition,
service requests spend most of that time waiting (i.e., blocked)
on I/O. Figure 4 shows the CDF of CPU utilization per dynamic
request. The median CPU utilization is only ~14%. Further, 99% of
the requests utilize the CPU less than 60%. The reason for the low
utilization is the frequent execution stalls due to RPC invocations:
the request execution is blocked waiting for the completion of
storage requests or calls to other services. Figure 5 shows the CDF
of the number of RPC invocations per dynamic request. A request
performs a median of ~4.2 RPC invocations. Moreover, about 5% of
the requests invoke 16 or more RPCs.
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Figure 4: CDF of CPU utiliza-
tion per request.

Figure 5: CDF of number of
RPC invocations per request.

As another data point, in the DeathStarBench applications [23],
the average execution time of a service request is 120us, and the
average request performs 3.1 RPC invocations.

To use resources efficiently in microservice environments, CPUs
need to context switch every time a request blocks on an RPC
invocation. The cost of a context switch is #5K cycles in Linux-based
systems and ~2K cycles in state-of-the-art software schedulers [36].
This overhead may be negligible for monolithic applications, where
the time between context switches is much larger than the context
switch overhead. However, this is not true for microservices.

To assess the impact of context-switch overhead on the request
tail latency, we simulate the execution of the 1024-core ScaleOut
manycore invoking the services of the SocialNetwork application
from DeathStarBench with a Poisson distribution with 5K, 10K, and
50K RPS. We add a certain amount of Context Switch overhead
cycles (CS) every time they suffer a context switch. We vary CS from
zero to 8K cycles. Figure 6 shows the tail latency of the requests.
The tail latency is normalized to the one with zero CS cycles. The
figure shows the range of CS cycles that are typical for Linux, and
for the state-of-the-art Shenango, Shinjuku, and ZygOS software
schedulers [36].

——5K RPS —#—10K RPS
Target HW

@ 30 Solution Shinjuku 0

€20 2y905 y

510 !

Z o © 0 & s <
0

32 64 128 256 512 1024 2048 4096 8192
Context Switch Overhead (cycles)

50K RPS

Shenango Linux

Figure 6: Impact of the context switch overhead on the tail
latency with different requests per second (RPS).

These context-switch overhead cycles delay request processing.
We see that the impact is significant, especially for larger loads.
For 50K RPS, the context-switch overhead of Linux degrades the
tail latency of requests by 26-38x; the context switch overhead of
state-of-the-art software schedulers degrades it by 13-23x. Ideally,
we would like a CS of around 128-256 cycles which, as shown in the
figure, barely impacts the tail latency. Such CS requires hardware
support.

3.4 The Interconnect Impacts Tail Latency

In microservice environments, request execution triggers intercon-
nection network (ICN) messages, as it issues storage requests and
calls to other services. Such messages compete for ICN links, and
potentially suffer contention delays. Such delays directly impact
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the tail latency of requests. Consequently, the design and imple-
mentation of the ICN play a significant role in determining the tail
latency. In this paper, we are interested in the on-package ICN.

To assess this effect, we take the DeathStarBench applications
and run them on the simulated 1024-core ScaleOut manycore, is-
suing Poisson-distributed requests with 1K, 5K, 10K, and 50K RPS.
Cores are grouped in 32-core clusters, and the clusters are intercon-
nected with either a 2D mesh or a fat-tree ICN. The contention-free
hop-to-hop latency of the ICN is 5 cycles. Service requests are issued
to cores randomly. Figure 7 shows the resulting request tail latency.
Each bar is normalized to the tail latency of the same environment
without ICN contention.

14/ El2D Mesh [IFat Tree
=12
Z10
© 8
£ 6
S 4
R
0 1K-RPS 5K-RPS 10K-RPS 50K-RPS

Figure 7: Impact of contention in the on-package intercon-
nection network (ICN) on the tail latency of requests. Each
bar is normalized to the tail latency without ICN contention.

The figure shows that contention in the ICN has a substantial
impact on tail latency. With 50K RPS, contention in the 2D mesh
ICN increases the tail latency by 14.7X on average. For the fat-tree
ICN, the increase is 7.5% on average. Therefore, the ICN should be
carefully designed to minimize contention.

3.5 Large Read-Mostly Memories of Service
Instances & Small Working Sets of Requests

When a service instance is created, it initializes its state, which
includes its container, runtime, and libraries. To save initialization
overhead, microservice systems may store Snapshots of services in
memory with all the initialization state. This is especially important
in FaaS, where containers are created much more frequently [1, 18,
26]. Then, when a new instance is created, all that it needs to do to
initialize is to simply read its corresponding snapshot. Hence, for
performance reasons, it is important to keep snapshots in a near
read-mostly memory. For DeathStarBench applications, snapshots
reduce the boot time of a service instance from over 300ms to less
than 10ms, while using less than 16MB of memory per service [18].
In addition, every time a request is received for a service, the
service instance spawns a new handler. All handlers of a service
instance read some of the instance’s initialization data. Moreover,
as the handlers execute the same code, they read mostly the same
instructions. As a result, different handlers of the same service
instance have very similar instructions and read-data footprints.
A handler’s memory footprint is small. On average for the Death-
StarBench applications, it is only 0.5 MB. Figure 8 considers the
memory footprint of a handler (normalized to 1). In the Handler-
Handler bars, it shows what fraction of the footprint is common
(and hence can be read-shared) with another handler of the same
service instance. In the Handler-Init bars, the figure shows what
fraction of the handler footprint is common (and hence can be
read-shared) with the initialization process of the service instance.
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In each of the two groups, from left to right, the normalized bars
show the data footprint in pages, the data footprint in cache lines,
the instruction footprint in pages, and the instruction footprint in
cache lines. Pages are 4KB and cache lines are 64B. All bars are
averaged across all the DeathStarBench applications.

ElDifferent [CICommon
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Handler-Handler

. Footprint
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Figure 8: Handler-handler and handler-initialization sharing
of data and instruction pages and cache lines.

The figure shows that, on average, the fraction of pages or cache
lines that are common between two handlers or between a handler
and its initialization process is 78-99%. Consequently, a manycore
architecture for microservices can benefit from having read-shared
memories that are accessed by multiple requests of the same service
instance.

Because of the small footprint of handlers, requests put little
pressure on the cache hierarchy. This is in contrast to monolithic
applications, which require ever bigger caches [40, 41, 70]. Figure 9
shows the average hit rates of L1 and L2 TLBs and caches, both for
data and instructions, for the architecture in Table 2, which will be
discussed later. We observe that, for the L1 TLB and cache, the hit
rates of both data and instructions are above 95%. Hence, the work-
ing sets fit in L1 TLB and cache. The L2 TLB and cache have lower
hit rates; this is because the L1 structures act as filters, intercepting
the high-locality accesses. As a result, a manycore architecture for
microservices can use small caches and reduced-depth cache hierar-
chies (e.g., hierarchies of only two levels of caching). The resources
saved can be invested in supporting more parallelism.

Data Instructions
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L1TLB L1Cache L2TLB L2Cache L1TLB LlCache L2TLB L2Cache

Figure 9: L1 and L2 data/instructions TLB and cache hit rates.

4 uMANYCORE: A CLOUD-NATIVE CPU

This paper proposes pManycore, a processor designed for microser-
vices. In microservice environments, a key objective is to minimize
the tail latency of requests. Hence, pManycore is designed to min-
imize the primary overheads that contribute to the tail latency.
Some of these overheads impact both tail and average latency—
i.e., overheads that, to a large extent, affect all service requests.
Other overheads impact mainly tail latency—i.e., overheards that
disproportionately impact some requests, such as overheads result-
ing from contention effects. pManycore addresses both types of
overheads.

The characterization of Section 3 gives insights into the main
sources of tail latency in microservice environments. Table 1 lists
such sources, the reason why they exist, and how the pManycore
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Table 1: Main sources of tail latency.

Source | Reason

pManycore Solution

Monolithic
cache coher-
ence

Remote directory/cache/net-
work accesses (some due to mi-
gration) and contention

Multiple small cache coherent
domains

Request Synchronization and queuing | Request enqueuing, dequeuing,
scheduling of requests and scheduling in hardware
Context OS invocation and saving & | Hardware-based context
switching restoring state switching

On-package Network link/router latency | On-package hierarchical leaf-
network (some due to contention) spine network

design avoids them. In the following, we consider each of these
sources in turn. We assume a large manycore with 1024 cores.

1. Monolithic Cache Coherence. As indicated in Section 3.1,
requests for different service instances do not share memory state.
They communicate through remote storage accesses and through
service calls, both of which use RPCs. Hence, they do not require
monolithic cache coherence. Providing monolithic cache coherence
in a manycore typically results in remote directory and network
accesses, which increase tail latency. The only reason to provide
monolithic cache coherence would be to support service instance
migration across cores for load balance. However, unrestricted in-
stance migration across a large manycore results in (1) remote cache
accesses to obtain data from caches in cores where the instance used
to run, (2) more remote directory accesses, (3) additional network
traffic, and (4) increased contention. The result would be increased
tail latency.

In practice, there are some reasons to support modest-size cache
coherence domains. First, some services are multithreaded. Second,
allowing requests for a given service instance to migrate between
the cores used by the instance can improve load balance. Finally,
supporting some hardware cache coherent domain ensures that the
manycore remains general purpose. Consequently, in pManycore,
we eliminate monolithic hardware cache coherence and, instead,
have multiple small hardware cache-coherent domains. These do-
mains are called Villages. Each service instance is assigned to a
village. A service request is allowed to migrate between the cores
of its village for load balance, and to execute in parallel on the cores
of its village for speed.

Message-passing designs such as Intel’s Single Chip Cloud [30,
83] and Sony’s Cell Processor [21] completely abandon hardware
cache coherence. Such designs could also be used to run microser-
vice environments. However, they are suboptimal. Beyond not
supporting multithreaded services efficiently, they also fail to effi-
ciently handle request migration in the presence of frequent context
switches. Specifically, recall that a request is frequently blocked
on I/O. When the request gets restarted, to better utilize CPUs, the
system may want to run it on another core. Unless there is cache
coherence support, the state left by the request in the caches before
blocking will not be automatically reused after restarting.

Section 3.5 showed that handlers executing requests for the same
service instance share substantial read-only data and instruction
state. yuManycore takes advantage of this fact, as it maps requests
for the same service instance to the same village. Their handlers
read the same cache state, thereby improving overall performance.

When a village fills to capacity, the system may need to allocate
a new instance of the same service in another village. Such new
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instance will be initialized faster if it can read a Snapshot of the
service (Section 3.5). A snapshot takes 10s of MBs. Consequently,
pManycore provides a large Memory Pool of fast mostly-read SRAM
next to the villages to keep snapshots. Service instances in nearby
villages can access the memory pool.

2. Request Scheduling. As indicated in Section 3.2, requests come
in bursts, potentially creating queues of requests to be processed.
Given that request execution granularity is often in the scale of
microseconds, the overheads of request queuing and scheduling
are noticeable.

To provide efficient request handling, pManycore supports re-
quest enqueuing, dequeuing, and scheduling in hardware. Each
village has its own hardware queue for requests to local service in-
stances. When a request external to the pManycore package arrives
at the uManycore’s top-level NIC or a request is generated internally
in the pManycore package, the request is routed in hardware to the
village that runs the corresponding service instance and enqueued
in a queue. Then, a local core dequeues it. Both enqueuing and
dequeuing are performed in hardware, without any OS or other
software involvement.

3. Context Switching. A request spends most of its execution
time blocked on I/O, waiting on remote storage accesses or calls
to other services (Section 3.3). Cores avoid stall time by frequently
switching between requests. However, each context switch involves
thousands of cycles, directly degrading the tail latency.

To address this problem, pManycore has hardware support for
context switching. A core saves and restores state in a context
switch without any OS or software intervention.

4. On-package Interconnection Network (ICN). Messages be-
tween different villages and memory pools traverse ICN links and
routers. Network traversal can take substantial time, especially if
compounded by contention effects. The resulting latency directly
affects the tail latency.

To minimize this latency, uManycore uses an on-package Leaf-
Spine ICN topology [12, 20] (Figure 12), which has many redundant,
low-hop-count paths between any given source and destination
villages. Messages are less likely to suffer contention than in other
networks. Even multiple messages with the same source and desti-
nation villages can proceed in parallel without delaying one another.

In the following, we describe these four main components of
pManycore in detail.

4.1 pManycore Organization

Villages and Clusters. The basic unit of a uManycoreis a hardware
cache-coherent village. A village contains a set of cores (e.g., 8-16)
with private caches and a shared L2, a Request Queue module that
will be described later, and two I/O ports. Since the working set of
service requests is small (Section 3.5), there is no need for a deeper
cache hierarchy.

The combination of a few villages (e.g., 4), a memory pool, and a
network hub forms a cluster. Figure 10 shows a cluster. We envision
the combined villages, the memory pool, and the network hub to
be implemented as three different chiplets. Finally, a puManycore
package is composed of many clusters (Figure 11 shows two of
them) interconnected with a hierarchical leaf-spine ICN (Figure 12).
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Figure 10: Organization of a yManycore cluster.

Communication Modules. In a village, the local (L) I/O port is for
communication within the pManycore, and the remote (R) I/O port
is for communication outside the yManycore. Each port contains
a NIC and a hardware module to perform bulk memory transfers
(MEM)—useful to prefetch or write-back data chunks. The reason
why a village has two NICs is that the L-NIC is simpler. The L-NIC
runs on a lossless on-package network and, therefore, does not need
to support complicated transports (e.g., TCP) for re-transmissions
and congestion control. The network has back-pressure support; the
source waits for the network to become available before sending
messages. There is never the need for retransmission to handle
loss or for flow or congestion control. On the other hand, the R-
NIC operates on a lossy network when communicating with the
external world, and needs to support retransmission, reordering,
flow control (to avoid hogging the sender), and congestion control
(to avoid saturating the network). It estimates congestion using
acknowledgment (ACK) packets (e.g., in TCP or RDMA).

The Network Hub (NH) connects to the local and remote ports
of all the villages in the cluster. In addition, it is connected to the
on-package ICN (via the intra-package port) and to the puManycore’s
top-level NIC (via the inter-package port) to communicate with the
outside world (Figure 12). The local ports of the villages communi-
cate with the intra-package port; the remote ports of the villages
communicate with the inter-package port.

Figure 11 shows two clusters with their NHs as leaf switches of
the ICN, connected to another NH that acts as a second-level switch.
As we will see, groups of non-leaf NHs are placed in chiplets. All
the chiplets in clusters, plus the non-leaf NH chiplets, form the
processor package. This design can scale up to one thousand cores
or more.

Cluster Cluster
. | [ Memory | |, . ; | [ Memory | |, .
Village Pool Village Village Pool Village
l Network l
Hub
. Network " . Network .
Village Hub Village Village Hub Village
T T

—

Figure 11: Two clusters connected via non-leaf network hub.

Memory Pool. A memory pool (implemented as a separate SRAM
chiplet) contains a large volume of fast-access mostly-read data
that multiple service instances in the villages of the local cluster
may read (Figure 10). As indicated before, it contains snapshots of
services so that, when a new service instance is created in the cluster,
it can fetch the snapshot and skip instance boot-up and initialization
overheads. The memory pool also has hardware modules to perform
bulk memory transfers to and from on-package memory (L-MEM)
or to and from off-package memory (R-MEM,).

Resource Allocation. Each village runs its own light-weight
operating system such as a microkernel, and communicates with
other villages using messages. A service instance always stays
within one village. When the number of concurrent requests for
a given instance exceeds the capacity of the village, the system
creates another instance of that service in another village. The two
instances are independent and serve different arriving requests.

A village can also run instances of multiple different services. In
this case, pManycore partitions the cores within the village across
colocated service instances based on the instances’ load. Each core
is assigned a Service ID, which is stored in a separate register. In
this way, the system ensures a more predictable performance and
minimizes any negative interference between services.

A security-sensitive service instance can exclusively own a vil-
lage. In this way, we reduce the chances that a malicious program
performs side-channel attacks.

4.2 Hierarchical Leaf-Spine Interconnection
Network

The network hub (NH) in each cluster is a leaf switch of an on-
package hierarchical Leaf-Spine interconnection network (ICN). The
leaf-spine is a topology that provides high connectivity between
nodes [12, 20]. The left part of Figure 12, inside a dashed box,
shows the leaf-spine topology. The per-cluster NHs are the leaf
switches inside the box. Each NH is connected all-to-all to a set of
fewer, second-level NHs (4 in the figure). These second-level NHs
are standalone (i.e., not associated with any cluster), as shown in
Figure 11. This topology allows any pair of leaf NHs to communicate
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in two hops, and using as many different paths as there are switches
in the second level of the tree.

~ Service IDs
Village IDs

ServiceMap

To the outside world

Figure 12: Hierarchical leaf-spine interconnection network,
where NH stands for network hub. The figure also shows the
connection to the package top-level NIC.

Since a yManycore has many clusters, we build the leaf-spine
topology hierarchically. Figure 12 shows how the original topology
(now called a Pod) is connected to other pods with a third level of
NHs. This is the topology used in a uManycore. In our 1024-core
piManycore design, we have 4 pods and 8 third-level NHs. Thanks to
this topology’s ability to connect many clusters with low hop counts
and with redundant paths, this topology minimizes tail latency.

To provide connectivity to the outside world, the leaf NHs are
also directly connected to the top-level NIC of the package (Fig-
ure 12). Incoming external requests flow from the top-level NIC to
a leaf NH and then to the remote I/O port of a village. Outgoing
requests flow in the opposite direction. The top-level NIC schedules
incoming requests to the villages in hardware. Specifically, it main-
tains a ServiceMap table that stores, for each service ID, the set of
villages that host an instance of that service. The ServiceMap is pop-
ulated by the system software every time a new service instance is
initialized in any village. When a request for a given service arrives
at the top-level NIC, the hardware checks which villages are able
to serve the request. Then, the hardware forwards the request to
one of those villages in a round-robin manner.

4.3 Hardware Support for Request Queuing and
Scheduling

As a village receives requests to execute locally, it is important
to minimize the overheads of (i) depositing them on a queue and
(ii) picking them up from the queue and executing them on local
cores. Minimizing these overheads reduces request tail latency.
Consequently, uManycore performs these operations in hardware.

To support these operations, each village includes a hardware
Request Queue (RQ) (Figure 13). The RQ is implemented as a circular
buffer, with head and tail pointers. Each full RQ entry corresponds
to a service request that is executing or wants to execute in the
local village. Each RQ entry contains three fields. The first one,
Status, is the status of the request, which can be: running, ready to
run, blocked on an RPC, or finished. The second field, Service ID, is
the ID of the service that the request invokes. Recall that a village
can have instances of multiple services. The third field, Req Ptr, is
a pointer to a local memory called Request Context Memory that
contains the context of the request. The context includes: the input
data, the destination service that should receive the results of this
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request’s execution, the ID of the process assigned to execute the
request, and the core where this request runs (if known).

Request Queue (circular) Request Context Memory

Status
Service ID
Req Ptr

<input, dest service, ...>

Ld ! <input, dest service, ...>

Figure 13: Hardware-based Request Queue.

Onrequest arrival, the village NIC hardware performs all the RPC
layer processing, such as header parsing, payload de-serialization,
and service dispatching [62]. Then, it places the request at the tail
of the RQ. Idle cores spin on a per-core local Work flag that is
automatically set when the RQ contains work to do. When the flag
is set, a core executes a Dequeue instruction that takes as argument
the ID of the service that the core is tasked to execute. Recall from
Section 4.1 that, when multiple services are co-located in a village,
individual cores are assigned to specific services. The Dequeue
instruction atomically accesses the RQ and returns the highest-
priority entry (i.e., the one closest to the RQ head) that matches
the service ID and is ready to run. It also sets the entry’s status to
running.

After a core completes the execution of a request, it executes
a Complete instruction, passing as argument a pointer to the RQ
entry. The hardware atomically accesses the RQ, sets the request
status to finished and, if the entry was at the RQ head, advances the
head to the first unfinished entry. With this hardware, pManycore
minimizes the tail latency effects of request queuing and scheduling.
Moreover, by processing requests in FCFS order, this scheme further
minimizes tail latency.

An alternative scheduling policy to use is Shortest Remaining
Processing Time First (SRPT). However, in microservice environ-
ments, SRPT is unlikely to improve much over FCFS for two reasons.
First, requests for a given service tend to have similar execution
times. Second, request execution is frequently interrupted by I/O
calls, which in our case will provide frequent opportunities to sched-
ule other ready-to-run requests.

If a request finds a full RQ, it is temporarily queued in the NIC.
If the NIC has exhausted its buffering space, it rejects the request.

A more advanced design of the RQ would involve dynamically
partitioning it into multiple RQs—each partition devoted to a dif-
ferent service. Specifically, when the system co-locates a second
service instance in a village, the system would partition the RQ and
record the new RQ structure in an RQ_Map hardware table. The
proportion of entries assigned to each service can be the same as
the proportion of cores assigned to each service. Since each core
maintains a register with the ID of the service it is assigned to exe-
cute and passes it as an argument to the Dequeue instruction, all
that is needed is to augment the Dequeue instruction to check the
RQ_Map first. This additional hardware would eliminate contention
of different-service cores for the same RQ, likely reducing the tail
latency further. We do not consider this design in the evaluation.

4.4 Hardware Support for Context Switching

State-of-the-art schemes for efficient scheduling of microservice
workloads [7, 36, 61, 63, 67] use a “run-to-completion” model: a
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core is assigned to execute a request until it completes. At best, the
process is pre-empted if it runs for very long, to prevent head-of-
line blocking [36]. In practice, as shown in Section 3.3, the process
executing a request is blocked most of the time, due to issuing
storage accesses or calling other services. In the meantime, the cores
context switch and execute other requests. The frequent context
switching induces overhead and expands tail latency.

To assess this overhead, we run the highly-optimized Shinjuku
software scheduler [36] in our simulated 1024-core ScaleOut many-
core (Section 5). Shinjuku needs to (1) run on a dedicated core, (2)
detect when a process on a core blocks, (3) save the context of the
blocked process, (4) find a ready request by checking the RQ, and (5)
restore the context of the ready request from memory. We find that
this centralized software easily becomes a bottleneck and limits the
overall throughput. It consumes time and, as shown in Figure 6,
results in a high tail latency.

To address this problem, pManycore adds hardware support to
reduce the overhead of context switching. The idea is that, when
the execution of a request blocks, special hardware in the core
saves the process state to memory. Then, the core is ready to access
the RQ to get a new request. Also, when a core obtains from the
RQ a request that had partially executed in the past, the hardware
restores from memory the state of the request. The state saved and
restored includes general-purpose and special-purpose registers;
interrupt, exception, debugging, and privilege level information;
and cached storage descriptors [47, 48]. The state is a few hundreds
of bytes.

To support this design, the entry for a request in the Request
Context Memory (Figure 13) is expanded to include space for the
saved process state. Further, when a process executing on a core
issues an RPC and is about to get blocked, the core executes a new
ContextSwitch instruction. In hardware, this instruction saves the
process state in the corresponding entry of the Request Context
Memory, and sets the Status field in the RQ to blocked. The core is
now free to spin on the Work flag to see if there is work to do.

When the NIC receives the RPC response, it puts the response in
the Request Context Memory entry of the corresponding request,
and then changes the Status field of the RQ entry from blocked
to ready to run. At this point, an idle core will see a set Work
flag and execute a Dequeue instruction. pManycore augments the
Dequeue instruction to also upload the state of the selected request
from the Request Context Memory to the core registers. The other
functionality of Dequeue is unchanged.

Overall, with this support, cores keep context-switching over-
heads to a minimum, and can perform useful work practically all
the time—effectively reducing tail latency.

5 METHODOLOGY

We model a pManycore package with 1024 cores organized into
32 clusters. Each cluster has 4 villages of 8 cores each, one mem-
ory pool, and a network hub (NH). Each village has a 64-entry
request queue (RQ). pManycore uses a leaf-spine interconnect with
a three-level hierarchy. There are 32 leaf-level NHs organized into 4
chiplets. For the second level, there are 4 groups of 4 NHs, organized
into 4 chiplets. Each second-level NH in a group connects to all 8
NHs of the first level. For the third level, there are 8 NHs in two
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chiplets, where each third-level NH is connected to all 16 second-
level NHs. The longest communication path is only 4 hops. Overall,
a pManycore package has 32 clusters, 128 villages, 32 memory pools,
and 56 NHs, for a total of 74 chiplets.

puManycore has simple, energy-efficient cores similar to ARM
A15 [3]. They are 4-issue and run at 2GHz. They have a small ROB
(64 entries) and LSQ (64 entries), private L1 caches, a single-level
TLB, and a shared L2 cache.

We model two baseline hardware-coherent processors: the Server-
Class multicore and the ScaleOut manycore. ServerClass is a beefy
server-class processor, similar to Intel’s IceLake [34]. Its cores are
6-issue and run at 3GHz. They have a large ROB (352 entries) and
LSQ (256 entries), private L1 and L2 caches, two levels of TLBs, and
a shared L3 cache. For comparison to pManycore, we evaluate two
sizes of ServerClass processors: one with 40 cores that consumes
the same power as pManycore, and one with 128 cores that has
the same area as yManycore. The former is like a current high-end
IceLake; the latter is an unrealistically power-hungry multicore.

ScaleOut is a 1024-core manycore organized into 32 clusters.
ScaleOut uses the same cores and cache hierarchy as pManycore,
including L2 caches shared by 8 cores. ScaleOut does not include
the pManycore novelties: no global cache coherence, leaf-spine
ICN, hardware support for request queuing and scheduling, and
hardware support for context switching.

ServerClass and ScaleOut use conventional ICNs, namely a mesh
and a fat-tree, respectively. For comparison to yManycore, the fat-
tree topology has 63 NHs and its longest path is 10 hops. Both
baselines use a highly-optimized state-of-the-art software-based
context-switching scheme [36] and techniques that reduce NIC-to-
core communication overheads [32, 77].

We model 10-server machines with each of the three types of pro-
cessors. Table 2 shows the parameters of the architectures. To model
these machines, we use the SST architectural simulator [65] con-
nected to the DRAMSim2 memory simulator [66]. We use Pin [49]
to collect traces and feed them to the SST simulator.

To compute the area and power consumed by each of the proces-
sors, we use CACTI [5] for the memory structures and McPAT [46]
for the cores. We use the 32nm technology available with the tools,
and then scale to 10nm technology [76]. The combined dynamic
and static power consumed by one core and its portion of the cache
hierarchy is: 10.225W for ServerClass, 0.396W for ScaleOut, and
0.408W for uManycore.

Applications. We use applications from the open-source Death-
StarBench [23] microservice benchmark suite with commit ID
¢86920a. Due to space limitations, we show the results for only
the 8 Social Network applications. The results are similar for the
other applications of the benchmark suite. We use Poisson distri-
butions for the request inter-arrival time. We use average loads
of 5K, 10K and 15K requests per second (RPS) per server, which
correspond to average CPU utilizations of <30%, 30-60%, and >60%,
respectively. We collect the tail and average response time and
throughput for each application.

In addition, like prior work [36], we also use synthetic bench-
marks with three service time distributions (exponential, lognormal,
and bimodal) and 2-6 blocking calls during the execution.



ISCA ’23, June 17-21, 2023, Orlando, FL, USA

Table 2: Architectural parameters used in the evaluation.

ServerClass Multicore

Multicore 40 (or 128) 6-issue cores, 352-entry ROB, 256-entry LSQ, 3GHz
L1 cache 64KB, 8-way, 2 cycles round trip (RT), 64B line
L2 cache 2MB, 16-way, 16 cycles RT, 20 MSHRs
L3 cache 2MB/core, 16-way, 40 cycles RT, 20 MSHRs
L1 DTLB 256 entries, 4-way, 2 cycles RT
L2 DTLB 2048 entries, 12-way, 12 cycles RT
Network 2D mesh
ptManycore and ScaleOut Manycores
Manycore 1024 4-issue cores, 64-entry ROB, 64-entry LSQ, 2GHz
L1 cache 64KB, 8-way, 2 cycles RT, 64B line
L2 cache 256KB, 16-way, 24 cycles RT, 20 MSHRs
L1 DTLB 128 entries, 4-way, 2 cycles RT
Network Fat tree (ScaleOut), leaf-spine (uManycore)

Network

5 cycles/hop (4 router delay + 1 wire delay) [9]
1us RT; 200GB/s

Intra server
Inter server

Main-memory per Server

Capacity 80GB
Channels; Banks 4;8
Frequency; Rate 1GHz; DDR

Mem bandwidth 8 memory controllers; 102.4GB/s per controller
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Figure 14: Tail latency in ServerClass, ScaleOut, and
iManycore normalized to ServerClass. The numbers on top
of the ServerClass bars are the absolute latency values in ms.

6 EVALUATION

In this evaluation, response time (i.e., latency) is measured end-to-
end, from when the client sends a request to when it receives the
result. We give both the average and the P99 (i.e., 99th percentile)
values. Unless otherwise indicated, ServerClass has 40 cores and,
therefore, consumes approximately the same power as pManycore.

6.1 End-to-End Tail Latency

Figure 14 shows the tail latency in the three architectures when run-
ning the DeathStarBench applications, normalized to ServerClass.
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On top of the ServerClass bars, we show the absolute latency values
in ms. The systems are tested with three load levels: (a) 5K, (b)
10K, and (c) 15K RPS. We see that pManycore significantly reduces
the tail latency for all applications across all loads. On average,
ptManycore reduces the tail latency over ServerClass by 6.3%, 8.3X%,
and 16.7X for loads of 5K, 10K and 15K RPS, respectively, and over
ScaleOut by 5.4, 6.5X, and 7.4X for the same loads.

puManycore achieves greater reductions with higher system loads,
especially for the applications that are blocked more frequently, i.e.,
the ones that invoke a larger number of downstream services such
as SocialGraph service (SGraph). In these cases, the impact of the
pManycore techniques is more notable.

6.2 Tail-Latency Reduction Breakdown

Figure 15 shows the contributions of the four main pManycore
techniques to the reduction of tail latency for 15K RPS. Latency
reductions are normalized to the latency of ScaleOut. We apply the
four techniques one by one in order: villages (Section 4.1), leaf-
spine topology (Section 4.2), hardware scheduling (Section 4.3), and
hardware context switching (Section 4.4). On average, the cum-
mulative application of these techniques reduces the tail latency
by 1.1x%, 2.3%, 3.9%, and 7.4X, respectively. All techniques deliver
major reductions except for the village organization, which reduces
the tail latency by a modest 10%. The reason for this modest re-
duction is that we have favored the ScaleOut baseline. Specifically,
while ScaleOut uses global cache coherence, it has one queue per
32-core cluster, and only allows processes to migrate between the
32 cores of a cluster. If we allowed processes to migrate between all
1024 cores, ScaleOut would perform worse. In any case, the main
attractive of villages is not higher performance, but a reduction in
manycore area, power, and complexity by eliminating global cache
coherence—potentially allowing hardware resources to be used for
other goals.

I Villages [ HW Scheduling I HW Context Switch

18anln,,

Text SGraph User PstStr  UsrMnt HomeT CPost UrIShort Average

[ Leaf-spine ICN

P W U N ©

Tail Lat. Reduc. (times)

Figure 15: Contributions of the four main pManycore tech-
niques to the reduction of tail latency for 15K RPS. Latency
reductions are normalized to the tail latency of ScaleOut.

In applications that frequently use the ICN, such as Text and
SGraph, the leaf-spine ICN is very effective. These same applica-
tions also substantially benefit from the hardware scheduling and
hardware context switching techniques of yManycore. They often
have requests stalled, waiting for remote storage accesses or service
calls, and pManycore mitigates these overheads.

6.3 End-to-End Average Latency

Figure 16 shows the normalized average latency in the three designs
and for the three load levels. The numbers on top of the ServerClass
bars are the absolute latency values in ms. pManycore reduces the
average latency for all applications across all loads. The average
latency reductions are smaller than the tail latency reductions in
Figure 14. This is because the pManycore design is more tailored
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Figure 16: Average latency in ServerClass, ScaleOut, and
[tManycore normalized to ServerClass. The numbers on top
of the ServerClass bars are the absolute latency values in ms.

to minimizing the tail latency, by removing the major sources of
contention and interference. On average, uManycore reduces the
average latency over ServerClass by 2.3X, 3.2X, and 5.6X for loads
of 5K, 10K, and 15K RPS, respectively, and over ScaleOut by 2.1X,
2.5%, and 3.2X for the same loads.

6.4 Reduction in Tail-to-Average Ratio

The goal of yManycore is to minimize the tail latency, but also
to bring it closer to the average. In this way, the response time
becomes more predictable, and more users can be served within the
guaranteed QoS. Figure 17 shows the normalized tail-to-average
latency ratio per application for the three designs averaged across
all the loads. The numbers on top of the ServerClass bars are the
absolute ratios.

In uManycore, the tail to average latency ratio is significantly
smaller than in the other architectures. On average, it is 2.7X and
2.3% lower than in the ServerClass and ScaleOut baselines, respec-
tively. In UsrMnt, the tail to average latency ratio in pManycore is
3.3% lower than in ServerClass.

In the baselines, the ratio between the tail and the average is es-
pecially notable under high loads. Some requests are served quickly,
but the slowest ones are substantially slowed down due to queuing
and contention. In such environments, uManycore reduces the tail
latency while keeping the average latency low, thus shrinking the
ratio between tail and average.

6.5 End-to-End Throughput Improvements

We measure the number of requests that can be served by the sys-
tem (i.e, the throughput) without violating QoS guarantees. We say
that a QoS violation occurs if the request execution time is higher
than 5 times the contention-free average request execution time.
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Figure 17: Tail-to-average latency ratio of ServerClass, Scale-
Out, and pManycore normalized to ServerClass. The numbers
on top of the ServerClass bars are the absolute ratios.

Figure 18 shows the normalized maximum throughput that each
of the three designs can achieve without violating QoS guaran-
tees. The numbers on top of the pManycore bars are the absolute
throughput values that pManycore achieves in KRPS. pManycore
reaches a throughput that is 13.9-17.1X higher than the ServerClass.
On average, pManycore improves the throughput by 15.5X and 4.3x
over the ServerClass and ScaleOut baselines, respectively.
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Figure 18: Normalized maximum throughput a system can
achieve without violating QoS guarantees. The numbers on
top of the yManycorebars are the absolute throughput values
that yManycore achieves.

6.6 Sensitivity Analysis

ptManycore can be organized with different configurations of num-
ber of cores per village, number of villages per cluster, and number
of clusters. Figure 19 shows the tail latency in four configurations.
The bars are normalized to the tail latency of the first configura-
tion, which is the default configuration used in all the previous
experiments.

Topology Configuration (# cores per village, # villages per cluster, # clusters)

[ 8x4x32 HEM 32x1x32 [ 32x2x16 W 32x4x8

Text  SGraph  User PstStr  UsrMnt HomeT CPost UrlShort Average

Figure 19: Normalized tail latency with different pManycore
configurations.

All configurations are within 15% of each other’s tail latency.
Interestingly, different services are best suited to different configu-
rations. Specifically, services that do not call other services such as
UriShort perform better in larger villages (32x1x32). On the other
hand, services that frequently invoke other services such as HomeT
and SGraph have better performance with many smaller villages
(8x4x32). Overall, our default configuration has the overall lowest
tail latency.

6.7 Tail Latency with Synthetic Benchmarks

We now consider the effect of the service-time distributions of the
requests on the tail latency. We consider synthetic requests whose
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service time is distributed exponential, lognormal and bimodal.
Figure 20 shows the resulting tail latency for the three systems
(ServerClass, ScaleOut, and pManycore) and for the three load levels
(5K, 10K, and 15K RPS). The bars are normalized to ServerClass, and
the numbers on top of the ServerClass bars are the absolute latency
values in ps.

From the figure, we see that the previous trends hold for all these
service distributions. yManycore substantially outperforms both
baselines for all loads and service-time distributions. On average
across all loads and service-time distributions, pManycore reduces
the tail latency by 9.1x and 7.2x over ServerClass and ScaleOut,
respectively. With increased system load, the gains of yuManycore
become larger.
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Figure 20: Tail latency of ServerClass, ScaleOut, and
[iManycore normalized to ServerClass with synthetic bench-
marks. The numbers on top of the ServerClass bars are the
absolute latency values in pus.

6.8 Comparison to an Iso-Area ServerClass CPU

The evaluation so far has used iso-power configurations for Server-
Class, ScaleOut, and pManycore. In this section we compare iso-area
configurations. As indicated in Section 5, we use CACTI [5] and
MCcPAT [46] for our computations. In the iso-power configurations,
{iManycore has 2.9% more area than ScaleOut and 3.1X more area
than the 40-core ServerClass (i.e., 547.2mm? for pManycore versus
176.1mm? for ServerClass). Hence, for an iso-area comparison, we
keep ppManycore and ScaleOut unchanged and we scale ServerClass
to 128 cores, while leaving all the other parameters unmodified.
The new ServerClass processor improves the performance signif-
icantly, matching and sometimes slightly outperforming the tail
latency of ScaleOut. However, ServerClass still has a tail latency
that is on average 7.3X higher than the pManycore one across all
loads and applications. Also, the 128-core ServerClass processor
uses an unacceptably large amount of power, namely 3.2X more
than pManycore.

7 RELATED WORK

Software schedulers. Recently, researchers have explored vari-
ous software solutions for y-second scale scheduling and context
switching [7, 22, 31, 36, 37, 52, 53, 61, 63, 91, 97]. IX [7] schedules a
batch of requests at high throughput, but it degrades the tail latency
of heavy-tailed service time distributions due to using a per-core
distributed scheduler. ZygOS [63] minimizes head-of-line blocking
and load imbalance by allowing cores to steal requests from other
cores via expensive software operations. It can potentially degrade
the tail latency of short requests. Shinjuku [36] uses a centralized
scheduler with request preemption to tolerate different service time
distributions. It cannot scale to a large number of cores, and may
degrade the tail latency due to the cost of software context switches.
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Shenango [61] dedicates a core to perform scheduling, possibly lim-
iting its throughput and scalability. pManycore performs scheduling
and context switching in hardware, thus reducing the overheads
and increasing the throughput over such software schemes.

Message passing operating systems (OSes). Fos [87] and Bar-
relfish [6] are distributed OSes: a core runs a local OS and commu-
nicates with the OS of other cores only via message passing. There
is no cache coherence. However, as per Section 4.1, this architecture
is not well-suited for microservices. It is possible to use some ideas
from fos and Barrelfish to support the communication between the
shared-memory OSes running on each village.

RPC accelerators. Researchers proposed hardware accelerators to
improve the efficiency of the RPC-based communication [15, 32, 39,
44,62, 67,77, 95]. RPCValet [15] uses the on-chip NICs to monitor
per-core load and to steer RPCs to lightly-loaded cores. Nebula [77]
provides hardware support for efficient in-LLC network buffer man-
agement, and sends incoming RPCs into the CPU cores’ L1 caches.
The nanoPU [32] bypasses the cache and memory hierarchy and
places the arriving messages directly into the CPU register file.
Cerebros [62] executes all RPC layers in hardware without involv-
ing the CPU. While yManycore has been inspired by these systems,
none of them considers services that invoke other services and
are waiting idly for long durations. Therefore, they execute in the
run-to-completion manner and do not focus on efficient support
for context switching, as in pManycore.

Duplexity [56] is a processor architecture that, when there are not
enough latency-critical jobs (e.g., microservices) to run, it reconfig-
ures and uses the idle resources to run batch workloads. pManycore
could incorporate this approach to increase core utilization in low-
load periods.

Packet processing’s execution model, such as supported by the
Event Machine [58] can in principle be applied to process microser-
vice invocations. In packet processing, arriving packets are queued
up in multiple queues. Then, the system dequeues packets with
some notion of priority, and sends them to execute on available
cores. In puManycore, service invocations are queued and dequeued
in hardware. A key characteristic of microservice processing is that
service invocations frequently stall on I/O. In addition, some indi-
vidual service invocations may execute in a multithreaded manner.

Hardware queuing. Hardware queues [43, 45, 68] have been pro-
posed to support low latency communication between producer and
consumer threads running on different cores. Existing proposals tar-
get traditional task-parallel systems and bind the queue state to an
application’s context. In pManycore, queues are not per application,
but contain entries for different service requests. Hence, entries
are not saved and restored on a context switch. The producer is a
NIC and consumers are cores in the village. ALTOCUMULUS [95]
proposes a scheme for RPC scheduling in hardware. It does not
consider that requests are idle for most of the time due to block-
ing calls. The scheduler in pManycore takes into account blocked
requests and only schedules those that are runnable.

Chiplet-based processor designs. Recently, both industry and
academia have shown great interest in chiplet-based processor de-
signs [4, 19, 57, 69, 86, 89, 90]. These designs improve yield, allow
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the integration of heterogeneous components, and simplify pro-
cessor design. In some designs, processors are grouped in clusters
or core complexes [57]. One way in which pManycore goes be-
yond these designs is that, in pManycore, cache coherence is only
supported inside these clusters (called villages), not across them.

8 FUTURE WORK

1tManycore can be enhanced in a variety of ways to improve the
performance of microservice environments. These enhancements
add additional costs.

In pManycore, when different service instances are co-located in
the same village, pManycore apportions the cores to the different
service instances based on the expected load. It is possible that, as
requests arrive, the distribution of load across services is different
than expected—e.g., the cores of one of the instances are mostly idle
while those of the other are unable to keep up with the requests.
In this case, an enhancement to pManycore would be to allow an
instance to temporarily steal cores assigned to another instance.

In pManycore, all villages have the same hardware. It is, therefore,
a homogeneous architecture. A possible enhancement is to have
different hardware in different villages. For example, some villages
might have bigger cores. This approach would enable the assign-
ment of different types of services to different types of villages—
hence tailoring the hardware to the needs of the service instances.
However, it is unclear what different types of villages and how
many of each are needed. Moreover, services would likely have to
be instrumented to declare what type of village they would prefer.

9 CONCLUSION

To address the imbalance between emerging microservice environ-
ments and current processors, this paper proposed pManycore, an
architecture optimized for microservice environments. Based on
a characterization of microservice applications, pManycore is de-
signed to minimize unnecessary microarchitecture and reduce tail
latency. Rather than supporting manycore-wide hardware cache co-
herence, pManycore has multiple hardware cache-coherent smaller
domains called villages. Clusters of villages are interconnected
with a leaf-spine network, which has many redundant, low-hop-
count paths between clusters. To minimize overheads, pManycore
schedules and queues service requests in hardware, and includes
support to save and restore process state in a context-switch in
hardware. Our simulation-based results showed that uManycore
delivers high performance for microservice workloads. A cluster of
10 servers with a 1024-core pManycore in each server delivered 3.7X
lower average latency, 15.5X higher throughput, and 10.4Xx lower
tail latency than a cluster with iso-power conventional server-class
multicores. Similar good results were attained compared to a cluster
with power-hungry iso-area conventional server-class multicores.
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