
MXFaaS: Resource Sharing in Serverless Environments for
Parallelism and Efficiency

Jovan Stojkovic
University of Illinois at Urbana-Champaign

jovans2@illinois.edu

Tianyin Xu
University of Illinois at Urbana-Champaign

tyxu@illinois.edu

Hubertus Franke
IBM Research

frankeh@us.ibm.com

Josep Torrellas
University of Illinois at Urbana-Champaign

torrella@illinois.edu

ABSTRACT
Although serverless computing is a popular paradigm, current
serverless environments have high overheads. Recently, it has been
shown that serverless workloads frequently exhibit bursts of invo-
cations of the same function. Such pattern is not handled well in
current platforms. Supporting it efficiently can speed-up serverless
execution substantially.

In this paper, we target this dominant pattern with a new server-
less platform design named MXFaaS. MXFaaS improves function
performance by efficiently multiplexing (i.e., sharing) processor
cycles, I/O bandwidth, and memory/processor state between con-
currently executing invocations of the same function. MXFaaS
introduces a new container abstraction called MXContainer. To en-
able efficient use of processor cycles, an MXContainer carefully
helps schedule same-function invocations for minimal response
time. To enable efficient use of I/O bandwidth, an MXContainer
coalesces remote storage accesses and remote function calls from
same-function invocations. Finally, to enable efficient use of memo-
ry/processor state, an MXContainer first initializes the state of its
container and only later, on demand, spawns a process per function
invocation, so that all invocations can share unmodified memory
state and hence minimize memory footprint.

We implement MXFaaS in two serverless platforms and run
diverse serverless benchmarks. With MXFaaS, serverless environ-
ments are much more efficient. Compared to a state-of-the-art
serverless environment, MXFaaS on average speeds-up execution
by 5.2×, reduces P99 tail latency by 7.4×, and improves throughput
by 4.8×. In addition, it reduces the average memory usage by 3.4×.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; Dis-
tributed architectures;

KEYWORDS
Serverless computing, cloud computing, resource management

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589069

ACM Reference Format:
Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas. 2023.
MXFaaS: Resource Sharing in Serverless Environments for Parallelism and
Efficiency. In Proceedings of the 50th Annual International Symposium on
Computer Architecture (ISCA ’23), June 17–21, 2023, Orlando, FL, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3579371.3589069

1 INTRODUCTION
Serverless computing is a popular cloud computing paradigm. Users
upload their application and the cloud provider secures all the
libraries, runtime environment, and system services needed to
run it. The basic unit of execution is a function, which runs in
an ephemeral, stateless Container or micro virtual machine (VM)
created and scheduled on demand in an event-driven manner. Appli-
cations are then composed of multiple functions that communicate
with each other. In this environment, applications have the po-
tential to attain high resource utilization, scale easily, and can be
billed in a fine-grained manner. Today, serverless cloud services are
offered by all major cloud providers [2, 25, 30, 50] and are widely
used to construct applications in e-commerce [42, 78], image and
video processing [3, 22], machine learning model training and in-
ference [32, 65, 79], and many other domains [21].

Despite these attractive benefits, current serverless workloads
suffer multiple overheads. The most important ones include lengthy
startup latency [14, 18, 46, 66, 70, 75], large memory footprints that
limit how many containers can be executing concurrently [24],
and frequent execution stalls due to RPC/HTTP invocations to call
functions or to access remote storage [31, 36, 40, 45, 49, 64, 77].
Existing techniques address some of these shortcomings, but a lot
of improvement is still needed. For example, to reduce startup over-
head, some systems keep the state of an idle container in memory
for a long time [24, 51, 70], aggravating memory limitations.

Recent measurements have revealed that serverless workloads
frequently exhibit bursts of invocations of the same function [70,
76], either from different end-users or from a single one. Different
end-users can create bursts of invocations to popular functions,
triggered by certain events. A single end-user may issue thousands
of invocations of the same function in seconds—e.g., in serverless
video processing systems like ExCamera and Sprocket, to paral-
lelize real-time video encoding [3, 22]. In response to either case,
current serverless platforms spawn and execute many containers
concurrently.

An analysis of state-of-the-art platforms shows how inefficiently
this pattern is supported. First, the execution of a function is most of
the time blocked on synchronous wait operations, and cores either

https://doi.org/10.1145/3579371.3589069
https://doi.org/10.1145/3579371.3589069

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas

remain idle or frequently context switch between containers of
different functions. Hence, response times easily degrade. Second,
concurrent execution of multiple invocations of the same function
causes repeated I/O accesses to the same or similar data, and calls to
the same remote functions. The result is inefficient I/O bandwidth
use. Finally, the different invocations of the same function largely
bring the same state to memory. If the system does not allow mem-
ory sharing between invocations, the replicated state consumes
substantial memory, inhibiting the execution of other containers
and increasing their startup overhead.

To improve performance under this typical behavior, this pa-
per introduces a new serverless platform design named MXFaaS
or Multiplexed FaaS. MXFaaS improves performance by efficiently
multiplexing (i.e., sharing) processor cycles, I/O bandwidth, and
memory/processor state between concurrently-executing invoca-
tions of the same function.

MXFaaS introduces MXContainer, a new container abstraction
that can concurrently execute multiple invocations of a single func-
tion and owns a set of cores. An MXContainer has a Dispatcher
process and multiple Handler processes. The dispatcher initializes
the container in the first function invocation. At every function
invocation, the dispatcher forks a handler to serve the request. MX-
FaaS introduces three techniques, which address each of the three
aforementioned inefficiencies.

First, to enable efficient use of processor cycles, the dispatcher
in an MXContainer carefully suspends and resumes its handlers.
Its aim is to ensure that, at any time, the OS can schedule the
oldest N ready-to-execute invocations of the function—where N is
the number of cores owned by the MXContainer. The resulting
execution minimizes function response time.

Second, to enable efficient use of I/O bandwidth, the dispatcher
coalesces remote storage accesses and remote function calls from
multiple invocations of the same function. The coalesced storage
requests can be for a single key or for a vector of them; the coalesced
function calls are for the same function. The result is lower network
demands and reduced pressure on storage and processors.

Finally, to enable efficient use of memory/processor state, the
dispatcher first initializes the state of the container and only later,
on demand, spawns a handler process per function invocation.
With this design, all invocations share the unmodified initialization
state (which may comprise Mbytes of memory), reducing overall
memory footprint and allowing more instances of functions to
reside in memory at a time. Further, by executing these multiple
invocations of the same function on the owned cores, one also
reuses the cache and branch predictor state.

There are some prior schemes that enable some reuse of memory
state across concurrent invocations of the same function [1, 18,
31, 52]—but not to the extent of our proposal. The details are in
Section 10. No prior scheme combines the use of CPU cycles or I/O
bandwidth across concurrent invocations of the same function.

We implement MXFaaS in the Apache OpenWhisk [5] and KNa-
tive [37] platforms. MXFaaS does not require any hardware or
operating system (OS) support, or changes to user functions. We
evaluate MXFaaS with a diverse set of serverless benchmarks and
show that MXFaaS is very effective. Compared to a state-of-the-art
serverless baseline [31], MXFaaS on average speeds-up execution

by 5.2×, reduces the P99 tail latency by 7.4×, and improves through-
put by 4.8×. In addition, it reduces the average memory usage by
3.4×. Finally, MXFaaS outperforms an ideal scheme that predicts
which containers will be needed next and proactively warms them
up, by an average of 2.1× (or 2.9× for high load).

This paper makes the following contributions:
• A characterization of state-of-the-art serverless systems.
• The MXContainer abstraction.
• The MXFaaS serverless platform that enables efficient use
of processor cycles, I/O bandwidth, and memory state.

• An implementation and evaluation of MXFaaS.

2 BACKGROUND: FAAS PLATFORM
Figure 1 illustrates a typical architecture of a serverless platform,
such as OpenWhisk, KNative, OpenFaaS, or OpenLambda [5, 19, 20,
29, 37, 41, 53, 75]. A platform consists of centralized control mod-
ules (e.g., the frontend and the load balancer) that accept function
invocations and distribute them to the nodes. In each node, there
is an invoker module that is responsible for the execution of the
function.

Load BalancerFrontend

Invoker

Container 1

Node 1

Container 2 Container 3

Invoker

Container 4

Node 2

Container 5 Container 6

Func A
Runtime

Func A
Runtime

Func B
Runtime

Func B
Runtime

Func A
Runtime

Func C
Runtime

Figure 1: Overview of existing serverless platforms.

To execute a user-provided function, an invoker encapsulates the
function code together with an execution runtime in a container,
and spawns the runtime process [56]. The user function is executed
inside the address space of the runtime process [8]. The runtime
process first executes initialization code to set up network connec-
tions and initialize global variables. Then, it invokes the requested
function. The runtime only services one request (i.e., one function
invocation) at a time. To execute multiple invocations of the same
function concurrently, production-level platforms need to spawn
multiple containers.

When a function invocation completes, serverless platforms
keep the container in memory in warm state for a certain period
of time [24, 51, 70]. If, during this period, another request for the
same function is received, it is executed by the runtime process
in the warm container. However, with this approach, the global
state of the runtime process is sequentially shared across function
invocations. Such sharing may lead to both security and correctness
issues [8].

3 CHARACTERIZING FAAS ENVIRONMENTS
To understand the performance of serverless environments, this
section analyzes real-world serverless workloads and open-source
serverless benchmarks running on OpenWhisk [5]. For the former,
we use production traces from Azure’s serverless functions [11, 64]
and Alibaba’s microservices [48]; for the latter, we use functions
from FunctionBench [35] and applications from TrainTicket [68, 83].
We give more details of all these workloads in Section 7.

MXFaaS: Resource Sharing in Serverless Environments for Parallelism and Efficiency ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Request Storage

Prepare request

Download image

Resize image

Upload image

Prepare response

Response

Function 1
(Create Order)

Function 2
(Payment)

Function 3
(Invoice)

(a) Anti-pattern 1: Synchronous I/O (b) Anti-pattern 2: Functions calling functions

Response

Busy Waiting

Request

Function

Busy Waiting

Ti
m

e

I/O

I/O

Call
Call

Figure 2: Inefficient function patterns: (a) synchronous I/O
within a function, and (b) functions calling functions.

3.1 Inefficient Patterns
We observe a few inefficiencies in function implementation, appli-
cation orchestration, and resource provisioning.

3.1.1 Synchronous I/O within a Function. Serverless functions rely
on remote storage to maintain state. Functions are often of mil-
lisecond scale [70], and storage I/O can easily dominate function
execution time. Therefore, synchronous I/O in function code, as
shown in Figure 2a, is strongly discouraged as an anti-pattern [7].
Since synchronous I/O is often needed due to data dependencies,
the recommendation is to split a function into multiple smaller func-
tions and perform the I/O in between two functions. However, it
may not always be feasible to prevent synchronous I/O in functions.
Moreover, developers often fail to use disciplined coding practices.

3.1.2 Functions Calling Other Functions. To orchestrate serverless
applications, it is common to let a function call other dependent
functions—which resembles procedure calls in traditional program-
ming. Such practice is also an anti-pattern because such RPCs result
in a compound effect of synchronous waits, as shown in Figure 2b.
Although this anti-pattern is also strongly discouraged [6], we find
that it is prevalent in existing serverless applications. One reason
is that many serverless applications originate from traditional mi-
croservice applications that use RPCs to orchestrate applications.

3.1.3 Minimizing Function Startup Time. To minimize the start-
up overhead of function invocations, a number of optimizations
have been developed. One approach is to keep an idle container
in memory for long, so its process and state can be reused when a
subsequent invocation of the same function arrives [24, 51, 70]. This
optimization tends to increase the memory footprint—potentially
preventing other functions from executing concurrently due to lack
of memory. In addition, reusing the process in a container breaks
the isolation expected of containers: the state generated by one
function invocation is visible to the next invocation [8].

Another approach is to keep container snapshots in disk and pre-
load one when a request for the corresponding function arrives [18,
75]. This approach and the previous one speed-up the startup of
individual requests, rather than targeting many concurrent requests
in a burst. As a result, on a burst, they consume substantial memory
or create substantial disk traffic.

Other schemes such as SAND [1] and Faastlane [40] minimize
startup time by creating a single container for all the different func-
tions of an application. However, this design makes it harder to

21 23 25 27 29

Number of concurrent invocations of the same function

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Azure
Alibaba

Figure 3: CDF of the number of concurrent invocations of
the same function in Azure and Alibaba FaaS traces.

efficiently manage the hardware resources per container and scale
the number of containers, because the different functions in a con-
tainer may have very different hardware requirements and software
dependencies. For scalability and resource management efficiency,
it is best to keep different functions in different containers.

3.2 Workload and Execution Characteristics
3.2.1 Invocations of the Same Function are Bursty. It is known that
serverless workloads exhibit bursts of invocations of the same func-
tion [70, 76]. Figure 3 shows the distribution of the number of con-
current invocations of the same function in real-world workloads,
based on production FaaS traces from Azure [11] and microservice
traces from Alibaba [48]. The figure shows the CDF distribution.
In Alibaba, 50% of the invocations of a function are in bursts of 32
or more concurrent invocations of the function. Azure traces are
less skewed, but still, 20% of the invocations of a function are in
bursts of 8 or more concurrent invocations. This data is a result of
the goal of the serverless computing model to promote autoscaling
and elasticity.

3.2.2 Idle Time Dominates Function Execution. We take serverless
functions from FunctionBench [35] and serverless applications from
TrainTicket [68], and measure the idle time during the execution
of each function. We find that the two stall patterns of Section 3.1.1
and Section 3.1.2 are prevalent. All the 47 functions in the two suites
exhibit one of the two patterns. We also inspect other serverless
benchmarks [9, 15, 45, 80] and observe the same patterns.

Figure 4 shows the busy and idle time of a representative set of
these functions. Figure 4a shows functions that invoke synchro-
nous I/O. On average, 68% of the execution time of these functions
is taken by idle time. It can be shown that all the 14 functions
in FunctionBench issue synchronous I/O requests, following the
procedure of Figure 2a, where the code first downloads data from
remote storage, then processes it, and finally uploads the results to
the storage.

Figure 4b shows functions that call other functions. On aver-
age, 90% of the execution time of these functions is idle time. In
TrainTicket, it is common to have a calling pattern as in Figure 2b.
Of the 33 functions in TrainTicket, 13 have RPCs and the remain-
ing ones issue synchronous I/O (e.g., CreateOrd and PayOrd in
Figure 4a). The 13 functions that use RPCs issue on average 4.8
RPCs. As the leaf functions use synchronous I/O, the inefficiency
propagates along the call chains (Figure 2b).

3.2.3 There Is Substantial State Replication in Memory. When mul-
tiple invocations of the same function execute concurrently, they

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas

LR-serv
CNN-serv

RNN-serv ML-tr
VidConv

ImgRot
ImgRes

CreateOrdPayOrd Average0
200
400
600
800

1000
1200

Ex
ec

. T
im

e
(m

s)

Idle Time
Busy Time

(a) Functions that invoke synchronous I/O.

GetTckts
GetLeftInt

QTravel
CancOrd

GetTripInf InPay Refund
SecChck

Average0
50

100
150
200
250
300
350

Ex
ec

. T
im

e
(m

s)

Idle Time
Busy Time

(b) Functions that call other functions.

Figure 4: Busy and idle time of a representative set of func-
tions from FunctionBench and TrainTicket.

frequently access the same data and instructions. Unless a deliber-
ate effort is made to ensure that the invocations share pages, a lot
of data will be replicated in memory. The resulting large memory
footprint will limit the number of containers that can reside in
memory at a time and hurt throughput.

To understand the extent of the problem, we measure the mem-
ory footprint of each individual function in Figure 4a and break it
into the three categories shown in Figure 5: LibLd is the footprint
of the shared libraries; Init is the footprint of read-only data that is
function-specific and independent of individual invocations of the
function; and Handler is the footprint of the per-invocation private
data. The bars are normalized to 1 and, on top of each, we show
the total footprint in Mbytes. On average, LibLd, Init, and Handler
account for 66%, 24%, and 10% of the total footprint, respectively.

LR-serv

CNN-serv

RNN-serv
ML-tr

VidConv
ImgRot

ImgRes

CreateOrd
PayOrd

Average0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
. M

em
. F

tp
rin

t

150 MB 140 MB 90 MB 210 MB 120 MB 20 MB 21 MB 18 MB 19 MB 87 MB

LibLd Init Handler

Figure 5: Breakdown of the normalized memory footprint.

Under different FaaS schemes, concurrent invocations of the
same function can share different parts of the memory footprint.
Specifically, schemes that spawn a VM for a function invocation
from a previously-generated snapshot (SEUSS [14], REAP [75]) do
not enable the sharing of any of these categories. The same is mostly
true for schemes that fork the execution of a function invocation
from a template (SOCK [52] and Catalyzer’s sfork [18]). Schemes
that load the shared libraries into the container before forking a
process to execute the function invocation (SAND [1] and process-
based Nightcore [31]) enable the sharing of the LibLd footprint
across function invocations. They save substantial memory.

In this paper, we note that there is still a substantial amount
of memory footprint that can be shared across invocations of the
same function: the read-only data that is function-specific and
independent of individual invocations of the function (Init). The
average footprint of such data in Figure 5 is 20.4 MB. Our proposal

with MXContainer will be to delay the forking of a process for an
invocation until such data is initialized once by a special process
(Dispatcher). As a result, all function invocations will automatically
share this data. Based on the numbers in Figure 5, this approach
will allow us to keep in memory on average 3.4× more concurrent
function invocations than process-based Nightcore. The result will
be much higher concurrency and throughput.

3.2.4 There Are Concurrent Accesses to the Same Storage Locations.
All the concurrent invocations of the same function execute the
same code and, intuitively, should access the same storage area for
the same or similar data at similar times. If this is true, there is
an opportunity to merge the accesses to save I/O bandwidth. An
analysis of production FaaS Azure traces [11, 64] shows that 12% of
the applications access the same data blob in all of their invocations.
Moreover, invocations access relatively few different blobs: 66%
of the applications access less than 100 different blobs across all
invocations. More importantly, a given blob is accessed in a bursty
manner, offering opportunities for access merging. Figure 6 shows
the CDF of the interarrival time of accesses to the same blob. It can
be seen that 18% and 54% of the accesses to a given blob happen
within 1ms and 10ms, respectively.

0 20 40 60 80 100
Interarrival time (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Figure 6: Inter-arrival time of accesses to the same blob.

In addition, blobs are typically small: 80% are smaller than 12KB.
Hence, accessing many blobs in parallel, for the same or different
data, creates a network bottleneck—not due to data volume, but
due to connection overheads. Sharing and reusing connections for
data transmission can reduce the bottleneck.

3.3 Implications
Our analysis has revealed a few key bottlenecks in serverless envi-
ronments with bursty invocations of functions. First, functions are
blocked on synchronous wait operations most of the time. Hence,
unless cores are scheduled intelligently, the response time of func-
tion invocations can easily degrade substantially. Second, nodes
issue similar requests to storage and invoke similar functions. The
result is unnecessary I/O bandwidth consumption and pressure
on storage and processors. Finally, containers consume substantial
memory with replicated state. As a result, serverless systems are
often limited by available memory.

4 MXFAAS OVERVIEW
To eliminate the bottlenecks uncovered in our characterization
section, we now propose a new serverless platform design called
MXFaaS or Multiplexed FaaS. MXFaaS optimizes execution dur-
ing bursts of invocation requests for the same function—a typical
occurrence in serverless environments. Unlike current platforms,
MXFaaS leverages the synergies between these concurrent requests.
More specifically, it efficiently multiplexes (i.e., shares) processor

MXFaaS: Resource Sharing in Serverless Environments for Parallelism and Efficiency ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Load Balancer

Invoker

MXContainer 1

Dispatcher

Coalesce Schedule Intercept

HandlerBuffer

Storage

Node 1 Invoker

Storage

Node 2

Storage Func A Func A Func A

MXContainer 2

Dispatcher

Intercept Schedule Coalesce

HandlerBuffer

Func B Func B Func B

MXContainer 3

Dispatcher

Coalesce Schedule Intercept

HandlerBuffer

Func B Func B Func B

MXContainer 4

Dispatcher

Intercept Schedule Coalesce

HandlerBuffer

Func C Func C Func C

Figure 7: Overview of the MXFaaS serverless platform. The blue circles represent cores.

cycles, I/O bandwidth, and memory/processor state between con-
current invocations of the same function. The result is a higher
throughput and lower latency serverless environment.

MXFaaS introduces a new container abstraction called MXCon-
tainer or Multiplexed Container, which can concurrently execute
multiple invocations of the same function and owns a (potentially
changing) set of cores. An MXContainer has a Dispatcher process
and multiple Handler processes. The dispatcher initializes the con-
tainer in the first function invocation. At every function invocation,
the dispatcher forks a handler to serve the request. The multiple
handlers concurrently execute invocations of the same function on
different cores.

MXFaaS introduces three techniques, which improve the utiliza-
tion of three key resources. First, to enable efficient use of processor
cycles, the dispatcher in an MXContainer carefully suspends and
resumes its handlers. Recall that a typical function execution is
blocked most of the time, due to accesses to remote storage or to
calls to other functions. Therefore, cores either remain idle for large
periods or frequently context switch between containers of different
functions. However, in an MXContainer, since the dispatcher has
forked the handlers, the dispatcher can suspend and resume them.
The dispatcher’s aim is that, at any time, the OS can only schedule
the oldest N ready-to-execute invocations of the function—where N
is the number of cores currently assigned to the MXContainer. The
dispatcher buffers the remaining set of invocations of the function,
whose handlers may or may not be blocked on I/O or function calls.
The result is efficient execution that minimizes average and tail
response time.

Second, to enable efficient use of I/O bandwidth, the dispatcher
combines remote storage accesses and remote function calls from
multiple handlers running invocations of the same function. To
support storage request combining, the dispatcher keeps a table
with the outstanding storage accesses. When the dispatcher is about
to issue a remote request, it checks the table and, if there is a match-
ing request, it combines the two accesses. If there is no match-
ing request, the dispatcher waits for some time before issuing the
request—in the hope that an upcoming request can be combined
with it. Combined storage requests can refer to a single key or to a
vector of them.

In addition, the dispatcher combines function calls to the same
function—for the same or different inputs. The overall result of com-
bining storage accesses and remote function calls is lower network
bandwidth needs and reduced pressure on storage and processors.

Third, to enable efficient use of memory/processor state, the
dispatcher first initializes the MXContainer state and after that, on

demand, spawns a handler process per function invocation. With
this support, all invocations share the unmodified initialization state
(LibLd plus Init in Section 3.2.3 and Figure 5)—while protecting their
private data via copy-on-write. The result is a reduced memory
footprint, which enables more containers to reside in memory at a
time and, therefore, effectively reduces startup overhead.

Further, by executing these multiple invocations of the same
function on the owned cores, the MXContainer also enables reuse
of the cache and branch predictor state.

5 MXFAAS DESIGN
Figure 7 shows the MXFaaS serverless platform. It has a Load Bal-
ancer module and, in each node, an Invoker module and one or
more MXContainers. An MXContainer manages the concurrent
execution of multiple invocations of a function on a node, and owns
a (dynamically changing) set of local cores. A node can have MX-
Containers for different functions, but at most only one for a given
function. Different nodes may have MXContainers for the same
function.

The dispatcher in an MXContainer admits requests for the func-
tion. It buffers those that are: (1) blocked on I/O and therefore unable
to run, or (2) ready to execute but lack a core to run on. It only
allows the OS to schedule as many ready-to-execute invocations
of the function as cores the MXContainer owns. The dispatcher
regularly informs the node’s Invoker of its buffer’s utilization.

When an Invoker observes that a local MXContainer becomes
overloaded or underloaded, it dynamically changes the number of
local cores assigned to it. When an MXContainer is overloaded and
unable to get more cores, the global Load Balancer is informed. At
that point, the Load Balancer allocates another MXContainer for
the same function in another node. From then on, the Load Balancer
dynamically shares the load between the two MXContainers.

In this section, we describe how MXFaaS supports the three
techniques outlined in Section 4.

5.1 MXContainers for Sharing Processor Cycles
As shown in Section 3.2.2, a typical serverless function spends
most of its time blocked, waiting for data from remote storage or
for the return of an RPC. In some current systems, the OS does
not preempt the blocked request because the FaaS platform has
purposely limited the number of concurrently-running requests. In
other systems, the FaaS platform allows over-subscription. Hence,
the OS preempts the blocked request and schedules another request
for the same or another function. Unfortunately, this operation is

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas

inefficient without special support: the OS interleaves the execution
of multiple containers without deliberately trying to complete older
function requests first. The result is degraded average and tail
response time.

The MXContainer approach solves this problem by having the
dispatcher help manage the scheduling of the handlers. Recall that
the dispatcher has spawned the handler processes and, hence, can
suspend/resume them. In an MXContainer, the dispatcher main-
tains a buffer (HandlerBuffer) with the handlers that are ineligible to
run. These handlers correspond to function invocations that: (1) are
blocked on I/O or RPCs and therefore unable to run, or (2) are ready
to run but are not the oldest N ready-to-execute invocations—where
N is the number of cores currently owned by the MXContainer. Ef-
fectively, the dispatcher only allows the OS to schedule the handlers
for the oldest N ready-to-execute invocations of the function; the
rest are kept buffered inHandlerBuffer. This functionality minimizes
average and tail response time.

This functionality is supported as follows. First, when the dis-
patcher initially forks a handler process for a request, the dispatcher
(1) records the handler’s sequence order and (2) if all the owned
cores are busy, it suspends and buffers the handler in HandlerBuffer,
marking it as Ready. Second, when a running handler reaches a
blocking call, the call is redirected to the dispatcher, which buffers
the handler in HandlerBuffer, marking it as Blocked. Finally, when
the response for the remote storage access or RPC call is received,
the dispatcher intercepts it, passes the value to the corresponding
handler and, depending on the handler’s sequence order, it either
(1) keeps the handler suspended in HandlerBuffer, now marked as
Ready, or (2) resumes this handler and suspends a younger, running
handler of the same function. Again, the dispatcher can do this
because it has spawned both handlers.

Figure 8 shows an example of this mechanism. Figure 8a shows
a possible timeline of a function execution; the function spends
some time waiting for I/O. Figure 8b shows the execution of six
invocations of the same function in an MXContainer that owns
two cores. The invocations are ordered based on arrival time from
left to right. An invocation can be either using the CPU (Busy) or
buffered in HandlerBuffer marked as Blocked or Ready. At time 𝑡0,
the dispatcher picks the two oldest invocations: Invoc1 and Invoc2.
At 𝑡1, it picks Invoc3 and Invoc4 over Invoc5 and Invoc6. At 𝑡2 and
𝑡3, it again picks older invocations over Invoc5 and Invoc6.

Ti
m
e

Invoc1 Invoc2 Invoc3

Busy

Waiting

(a) (b)

Invoc4

Busy Blocked Ready

CPU1

CPU1

CPU2

CPU2
CPU1

CPU1

CPU2

CPU2Ti
m
e

CPU1

CPU1

CPU2

CPU2

Invoc5 Invoc6t0
t1
t2
t3

Figure 8: Interleaving of function invocations in two CPUs.

Using the Shortest Remaining Processing Time first (SRPT) algo-
rithm can further reduce the response times when the execution
time of the requests has a high variation. In practice, the requests
of a given function in FaaS environments are of similar size and
duration even when using different inputs [34, 67]. Moreover, SRPT

requires estimating the remaining execution time. Consequently,
we do not use SRPT.

Overall, in MXContainers, function invocations share processor
cycles in a way that minimizes average and tail response time.

5.2 MXContainers for Sharing I/O Bandwidth
As multiple handlers in an MXContainer concurrently execute
multiple invocations of the same function, these handlers are likely
to issue requests for the same storage area (and potentially even
the same keys). They are also likely to issue RPCs for the same
functions, possibly even using the same argument values. Recall
that the dispatcher intercepts all these blocking requests. This fact
offers the ability to combine storage accesses or RPCs frommultiple
handlers—minimizing the network load and the pressure on storage
and CPUs. We consider the two types of combining.

5.2.1 Remote Storage Access Combining. To combine remote stor-
age accesses, the dispatcher keeps a software Miss Status Holding
Table (MSHT). The MSHT has an entry for each outstanding stor-
age access from this MXContainer. It is analogous to the hardware
structure that records outstanding cache misses in cores.

When the dispatcher is about to issue a read to remote storage,
it checks the MSHT. If there is already an outstanding read to the
same key, the dispatcher issues no request. Instead, it combines the
two read requests by augmenting the existing MSHT entry with
additional information. When the key is received by the node, it
will be passed to both the initial and the new requesting handlers.

If the dispatcher wants to issue a read and there is an outstanding
write to the same key, or wants to issue a write and there is an
outstanding access to the same key, the dispatcher delays its request
until the previous access completes.

If the dispatcher is about to issue a remote storage access and
does not find an existing entry in the MSHT for the key, it waits a
certain time period (𝑇𝑚𝑒𝑟𝑔𝑒) before issuing the request. The goal is
to coalesce the request with any subsequent requests to the same or
different key that may come within a small time period—and there-
fore issue a single request instead of several. When the dispatcher
combines requests for different keys, it issues one vectorized request
to the remote storage. The MSHT records which handler accessed
which key.When the dispatcher receives the response, it unfolds the
vector and forwards the correct values to the appropriate reading
handlers.

Figure 9 shows an example of accesses to different keys without
coalescing (a) and with coalescing (b).

(a) (b)

D
is

pa
tc

he
r

Remote
Storage

Process 1
RdA

A

Remote
Storage

Rd(A,B)

A, B

Handler 1

Handler 2

Handler 3

RdA

RdB

RdA

A

A

BProcess 2
RdB

B

Process 3
RdA

A

Figure 9: Storage access coalescing in MXFaaS.

When the load is low, delaying a request may not result in a
merging event and, instead, can cause an increase in average and
tail latency. Thus, the dispatcher monitors the load and dynamically
decides whether to enable merging.

MXFaaS: Resource Sharing in Serverless Environments for Parallelism and Efficiency ISCA ’23, June 17–21, 2023, Orlando, FL, USA

5.2.2 Function Call Combining. A similar strategy could be used
to combine RPCs to functions. However, functions may have side
effects, which means that the outcome of two calls with the same
argument values may be different than the outcome of one single
call. Hence, the safe approach to combining involves delaying the
RPC for 𝑇𝑚𝑒𝑟𝑔𝑒 cycles and, if other RPCs to the same function are
detected in the meantime (with or without the same argument
values), bundle them all in a single I/O transaction that requires
executing all the function calls at the destination node.

A special case is functions that, when invoked with the same
inputs, produce the same outputs and have no side effects. If the
programmer knows that a function behaves in this way, she can
annotate the function as pure. For pure functions, the dispatcher
maintains a table recording the set of {inputs, outputs} tuples ob-
served in the past. When the dispatcher is about to call a pure
function with certain input values, it checks the table. If it finds an
entry with the same inputs, it reads the outputs and skips the RPC.
Pure functions are common: in the SeBS [15], TrainTicket [83], and
FunctionBench [35] benchmark suites, 50.0%, 57.6%, and 60.0% of
the functions, respectively, are pure.

5.3 MXContainers for Sharing Memory and
Processor State

The MXContainer for a function instance has a dispatcher pro-
cess and multiple handler processes. In the first invocation of the
function, the dispatcher first executes the function initialization.
In every invocation of the function, including the first one, the
dispatcher forks a handler process that executes the function. With
this design, the different handlers automatically share the unmod-
ified initialization state (LibLd and Init in Section 3.2.3) and, on
a write, create private page copies via copy-on-write. This is in
contrast to previous FaaS schemes, where different invocations of
the same function share at most LibLd. As shown in Figure 5, Init is
large. When many handlers are running concurrently, sharing Init
pages rather than replicating them reduces the memory footprint
significantly. As a result, the MXContainer approach substantially
reduces the total memory footprint of the multiple concurrent in-
vocations relative to previous FaaS schemes. The smaller footprint
frees-up space for containers of other functions.

With MXContainers, the startup overhead of the multiple con-
current invocations is reduced, as it is paid only once for the first
invocation of the burst. Given the short-lived execution of functions,
reducing the startup overhead speeds-up execution significantly.
Note that, in an MXContainer, each function invocation is executed
in the address space of a new process. No process is reused to exe-
cute multiple function invocations. Thus, MXContainers avoid the
security and correctness issues of reusing a process for multiple
invocations (Section 2).

Serverless functions do not typically write to files because their
updates are not persistent. However, they could read from read-
only files or write to temporary files. Hence, if we allow multiple
processes to run concurrently inside the container, we need to
ensure there are no data races in file updates. To achieve this, we
develop a scheme similar to copy-on-write memory pages. As long
as a handler process only reads from a file, it can use the shared
initial file. However, once the handler tries to perform an update to

the file, it creates its own temporary file, with a unique name. From
this moment on, all reads and writes by the handler are done on
the new temporary file. When the handler completes its execution,
all of its temporary files are discarded.

An alternative would be to use existing container primitives
such as namespace and chroot. However, these primitives are
inefficient because they require copying all the files before the
handler starts execution.

Finally, since all these multiple invocations of the same function
run on the cores owned by the MXContainer, their processes reuse
the cache and branch predictor state with each other. Individual
functions typically have low divergence in the set and order of
executed instructions across different invocations (even with dif-
ferent inputs) [34, 67]. Thus, the MXContainer design significantly
reduces the misses in caches and branch predictors.

6 MXFAAS IMPLEMENTATION
We build MXFaaS in both OpenWhisk [5] and KNative [37], two
serverless cloud platforms. In this section, we discuss a few impor-
tant implementation aspects.

6.1 Function Runtime
We implement the MXFaaS runtime with 1.2K lines of Python code.
Users can write functions in any language that supports the fork-
ing mechanism. The initialization of a function is performed by
importing a module (for Python functions) or by loading a shared li-
brary (for C/C++/Rust functions). We discuss support for additional
languages in Section9.

As indicated in Section5.1, the dispatcher in an MXContainer
intercepts the blocking calls in handlers. A function can employ
various library APIs to invoke other functions or to perform I/O. In
Python, most communication libraries such as requests, redis,
minio, pymongo, and boto3 call APIs from the recv family of
Python’s socket module (e.g., recv, recv_from, recv_into) to
block. Hence, we overload all these socket APIs with wrappers
that inform the dispatcher when a handler (identified by its PID)
calls a block API. When the dispatcher is notified, it calls the socket
API on behalf of the handler (after suspending the handler). Later,
the dispatcher receives the response and informs the handler.

To be able to support other languages, the dispatcher needs to
intercept blocking calls beyond Python’s socket module.

We inspect blocking I/O and RPC libraries from different lan-
guages and find that they eventually invoke the recvfrom system
call. To capture recvfrom, MXFaaS uses LD_PRELOAD [58] to in-
tercept target system calls in user mode. When a recvfrom system
call is captured, the wrapper forwards the handler PID and call
arguments to the dispatcher. The rest of the algorithm remains
unmodified. In over 110 open-source functions analyzed, we did
not observe any other blocking calls that are long enough to be ex-
ploited. There are some local OS blocking calls, but these operations
are too short to be exploited for scheduling within an MXContainer.

We implement copy-on-write for files by intercepting system
calls for filesystem operations, such as open, read, and write. As
long as the handler does not perform updates to the file, it can read
from the original shared file. Once it tries to update the file via the
write call, we copy the initial file to a temporary file and save the

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas

translation from the initial file name to the newly-created file name.
All later operations to the file are redirected to the temporary file.

We implement the I/O access combining support for Redis. Specif-
ically, the dispatcher intercepts get and put requests by handlers.
For a get, if there is an outstanding get for the same key, the dis-
patcher augments the existing MSHT entry with new information.
Then, when the dispatcher receives the response, it forwards it to
all handlers that requested it. Otherwise, the dispatcher coalesces
multiple requests to different keys issued within 𝑇𝑚𝑒𝑟𝑔𝑒 into one
collective request. It sends one mget/mput request instead of many
get/put. Other storage services can be supported in similar ways.

6.2 Serverless Platform
MXFaaS requires platform modifications to set the number of MX-
Containers in the system and the number of cores for each MXCon-
tainer. Initially, the load balancer picks a node for each MXCon-
tainer. In a given node, MXFaaS divides the cores among different
MXContainers based on their relative needs. To estimate the core
needs of MXContainers, MXFaaS dynamically measures: (1) the
fraction of requests for each type of function and (2) the time that
handlers spent buffered in state Ready in the HandlerBuffer of each
MXContainer. Based on these measurements, MXFaaS sets (and
dynamically adjusts) the number of MXContainers in the whole
platform for each function and the number of cores assigned to
each MXContainer.

Consider the MXContainer of a function in a node. Let 𝐶 be
the number of cores in the node, 𝑅 the overall number of function
requests per second (RPS) received by the node, and 𝐹 the RPS for
the function supported by the MXContainer. Then, the MXCon-
tainer is assigned𝑚𝑎𝑥 (𝐶× 𝐹

𝑅
, 1) cores in the node. At the same time,

MXFaaS monitors the average amount of Ready time per function
invocation in each MXContainer. It checks such time against two
thresholds: a low one (LowReady) and a high one (HighReady). If
the average Ready time in an MXContainer is higher than High-
Ready, MXFaaS first tries to get more cores for the MXContainer
by stealing local cores from another MXContainer whose average
Ready time is less than LowReady. If the MXContainer is unable to
get the necessary local cores, MXFaaS creates a new MXContainer
for the same function in another node.

To deal with transient loads, MXFaaS sets aside a pool of idle
cores on every node (i.e., server). When an MXContainer experi-
ences a load spike, the invoker first takes cores from the pool before
stealing cores from other containers in the node. When the load for
the container drops, it returns cores back to the pool. The dispatcher
observes if the load changes quickly and, if so, it can further reduce
LowReady to prevent a container from returning cores too soon.

We changed the implementations of OpenWhisk’s invoker and
load balancer [54, 55]. The invoker works with MXContainers in
addition to with traditional containers: it is informed of the MXCon-
tainer load and allocates CPU cores accordingly. The load balancer
is informed of any MXContainer overload. The modifications re-
quired about 400 lines of Scala code.

For KNative, we modified the autoscaler and activator [38, 39],
which play a similar role as the load balancer and invoker in Open-
Whisk. The modification is identical to that of OpenWhisk but
written in about 300 lines of Go code.

6.3 Multitenancy and Security Implications
MXFaaS follows the multitenancy security model of existing server-
less platforms [10]: a container belongs to a tenant, and different
end-users can issue service requests that can be executed in the
same container without special security protections.

Requests executed in different MXContainers do not share any
state and run on different cores. In this paper, we assume that it is
safe to collocate multiple MXContainers from different tenants in
the same server. Requests executed in the same MXContainer use
process-level isolation: they share initialization state but cannot
access each others’ private data. Moreover, they execute on the
same cores. Therefore, it is potentially easier for them to use shared
hardware resources such as MSHRs, branch predictors, and caches
as side channels. Most of these side channels already exist in current
systems. An analysis of the resulting security implications is beyond
this work’s scope.

7 METHODOLOGY
Evaluation Environment.We evaluate MXFaaS on OpenWhisk
and KNative in a 15-server cluster. Each server has an AMD EPYC
1-socket 7402P processor with 24 cores (2-way multi-threaded),
128GB DRAM and a 128MB LLC. Each server runs Ubuntu 20.04.2
LTS. In this paper, we only discuss the results from OpenWhisk.
The KNative results are similar because MXFaaS is not specific to
the underlying system.
Baseline System. To serve as baseline, we have emulated the
state-of-the-art Nightcore [31] on top of OpenWhisk and KNative.
Each container can support up to a maximum number of process-
based invocations of the same function. The processes are forked
when the libraries are loaded—i.e., before the function initialization.
Therefore, unlike MXFaaS, processes can only share the LibLd state
in Figure 5. If there are more concurrent invocations than the max-
imum allowed, the additional requests are buffered and run later
when some of the previous invocations complete.
Evaluated Functions and Applications. We use functions from
FunctionBench [35], a suite that includes ML training, ML model
serving, and image/video processing. We choose FunctionBench
because it is widely used in prior serverless research [4, 24, 44, 75,
81, 82]. Since FunctionBench does not include functions from the
popular web services, we include two standalone web functions
from TrainTicket [68], a large serverless application suite (Create-
Ord and PayOrd). Web-service functions are more lightweight than
those in FunctionBench (Figure 4a). The complete set of functions
evaluated is in the upper part of Table 1. We also use serverless
applications composed of several functions that call each other. We
select four representative applications from TrainTicket [68] (lower
part of Table 1). We use Redis [62] as the storage service for all the
evaluated functions. To be conservative, we annotate no function
as pure (Section 5.2.2).
Workloads. We evaluate MXFaaS under low, medium, and high
load levels, corresponding to an average of 450 requests per second
(RPS), 1000 RPS, and 1800 RPS, respectively. We choose these low,
medium, and high load levels based on the fact that they drive the
CPU utilization in our MXFaaS environment to ≈ 25%, 50%, and
70%, respectively, which is representative [16, 27, 47, 63]. Also, like

MXFaaS: Resource Sharing in Serverless Environments for Parallelism and Efficiency ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 1: Serverless benchmarks used in the evaluation.
Benchmark Description

Standalone Functions
LR-serv ML model serving: Logistic regression
CNN-serv ML model serving: CNN-based image classification
RNN-serv ML model serving: RNN-based word generation
ML-tr ML model training: Logistic regression
VidConv Video processing: Apply gray-scale effect
ImgRot Image processing: Rotate image
ImgRes Image processing: Resize image
CreateOrd Web service: Write created order to database
PayOrd Web service: Withdraw money from account

Serverless Applications
TcktApp Get all tickets for a given trip (15 functions)
TripInfApp Get information about the trip (24 functions)
GetLeftApp Get unsold tickets for a given time frame (5 functions)
CancelApp Cancel an order (4 functions)

in prior research on serverless systems [1, 12, 26, 69, 72, 74, 81], we
use the Poisson distribution to model request inter-arrival time.
Parameter Setting. We perform sensitivity analyses to determine
the values of MXFaaS parameters. For 𝑇𝑚𝑒𝑟𝑔𝑒 , Section 8.2.3 selects
1ms. Moreover, we set the SLO of a request to 2× the execution time
of the same request on an unloaded system. This is more conser-
vative than the prior art [12, 26]. When the average response time
gets close to 1.5× the unloaded execution time, MXFaaS considers
the corresponding MXContainer to be getting overloaded. Thus,
we set 𝐻𝑖𝑔ℎ𝑅𝑒𝑎𝑑𝑦 to 40% of the function execution time. When the
average response time is close to the unloaded execution time, MX-
FaaS considers the corresponding MXContainer to be underloaded.
Thus, we set 𝐿𝑜𝑤𝑅𝑒𝑎𝑑𝑦 to 10% of the function execution time.

An MXContainer only accepts a certain number of concurrent
function invocations. Such number depends on the number of cores
it owns (𝑁), the average busy (𝐵) and idle (𝐼) time of an invocation,
and the HighReady threshold. Specifically, the execution time of a
request is 𝐼+𝐵. Within the 𝐼 period, we can squeeze in 𝐼

𝐵
additional

requests. Therefore, the total number of requests executing in 𝑁

cores is 𝑁 × (1 + 𝐼
𝐵
). If we are willing to add 𝐻𝑖𝑔ℎ𝑅𝑒𝑎𝑑𝑦 delay

to each 𝐼+𝐵 execution without violating the SLO, the response
time becomes 𝐼+𝐵+𝐻𝑖𝑔ℎ𝑅𝑒𝑎𝑑𝑦. If the number of requests to get the
response time 𝐼+𝐵 is 𝑁 × (1 + 𝐼

𝐵
), then using a simple proportion

we can derive that the number of requests to satisfy the response
time 𝐼+𝐵+𝐻𝑖𝑔ℎ𝑅𝑒𝑎𝑑𝑦 is 𝑁 × (1 + 𝐼

𝐵
) × (1 + 𝐻𝑖𝑔ℎ𝑅𝑒𝑎𝑑𝑦

𝐼+𝐵). Of these,
𝑁 are running and the rest are queued in the HandlerBuffer. An
MXContainer dynamically targets this number of queued requests.
The dispatcher informs the invoker about the number of queued
requests every 200ms. If the queue goes over this number, the
dispatcher immediately tells the invoker to either provide extra
cores or offload some of the future requests to another server.

8 EVALUATION
In this section, we evaluate MXFaaS’ end-to-end latency reduction,
its resource efficiency, its scalability, and a comparison to proactive
container creation techniques.

8.1 End-to-end Latency Reduction
We measure MXFaaS’ ability to reduce the end-to-end latency of
requests that invoke serverless functions or applications. The end-
to-end latency of a function or application invocation is the time

from when the client sends a request until when it receives the
result. We normalize the MXFaaS latency to the latency with Night-
core [31], which is our state-of-the-art baseline.

8.1.1 Average Speedups. Figure 10a shows the inverse of the nor-
malized latency, namely, the speedups of MXFaaS over the baseline,
for low, medium, and high system loads. From left to right, the
figure shows bars for the functions, their average, the applications,
and their average. On average across all benchmarks and load levels,
MXFaaS delivers a speed-up of 5.2×.

LR
-se

rv

CNN-se
rv

RNN-se
rv

ML-t
r

Vid
Con

v
Im

gR
ot

Im
gR

es

Crea
teO

rd
Pay

Ord

Fun
cAv

g

Tck
tApp

Trip
Inf

App

GetL
eft

App

Can
cA

pp

App
Av

g0
2
4
6
8

10

Av
g.

 S
pe

ed
up

Functions Applications

Low Load Medium Load High Load

(a) Speedups for various loads.

LR
-se

rv

CNN-se
rv

RNN-se
rv

ML-t
r

Vid
Con

v
Im

gR
ot

Im
gR

es

Crea
teO

rd
Pay

Ord

Fun
cAv

g

Tck
tApp

Trip
Inf

App

GetL
eft

App

Can
cA

pp

App
Av

g0
1
2
3
4
5
6

Av
g.

 S
pe

ed
up

Functions Applications
Memory + Processor State Sharing Processor Cycle Sharing I/O Sharing

(b) Speedup breakdown aggregated across all three load levels.

Figure 10: Speedups of MXFaaS over Nightcore.

MXFaaS achieves higher speedups with higher loads because
more requests benefit from the multiplexing. Under high load, the
latency of baseline increases substantially, as the baseline does not
exploit the idle times per request and, therefore, supports limited
parallelism. The result is an inefficient use of processor cycles and
queuing of ready requests even though CPUs are idle. This queuing
effect is amplified in short-lived functions. For example, the web-
service functions (CreateOrd and PayOrd) have a high baseline
overhead (as they have the shortest execution) and thus they benefit
substantially from MXFaaS.

Figure 10b shows the contributions of each of the three MXFaaS
components to the average speedup. The numbers are aggregated
across all three load levels. We apply the three components one
by one: sharing memory and processor state (Section 5.3), shar-
ing processor cycles (Section 5.1), and sharing I/O (Section 5.2).
All the techniques are effective. They deliver average speedups of
1.9×, 1.9×, and 1.4×, respectively. Processor cycle sharing especially
helps functions with relatively longer idle time due to blocking. I/O
sharing has higher contributions in serverless applications, where
functions have smaller data volumes and more communication.
Finally, memory and processor state sharing especially helps ML
functions that share a large model and a large input dataset.

8.1.2 Tail Latency. MXFaaS significantly reduces the tail latency
of the function/application requests. Figure 11 shows the P99 tail
latency in MXFaaS for different loads normalized to that in the
baseline. On average across all benchmarks and loads, MXFaaS

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas

reduces the P99 tail latency by 7.4×. As the load increases, the re-
duction also increases. In the baseline, the tail latency is high due to
queuing effects when requests are waiting for resources. MXFaaS
reduces the tail latency in two ways. First, it only lets the OS sched-
ule the oldest N ready-to-execute invocations of a function, where
N is the number of cores owned by the function’s MXContainer
(Section 5.1). Second, it is able to use memory and processor state
more efficiently.

LR
-se

rv

CNN-se
rv

RNN-se
rv

ML-t
r

Vid
Con

v
Im

gR
ot

Im
gR

es

Crea
teO

rd
Pay

Ord

Fun
cAv

g

Tck
tApp

Trip
Inf

App

GetL
eft

App

Can
cA

pp

App
Av

g0.0

0.1

0.2

0.3

0.4

No
rm

. T
ai

l L
at

en
cy Functions Applications

Low Load Medium Load High Load

Figure 11: Normalized P99 tail latency.

8.2 Resource Efficiency
MXFaaS significantly improves resource efficiency, which results
in higher throughput. In this section we consider several aspects.

8.2.1 Container CPU Utilization. We compare the CPU utilization
in MXContainers and in the baseline containers. Figure 12 shows
the container CPU utilization over time in MXContainers and in the
baseline, while executing CNN-serv (the least idle workload) and
CreateOrd (the most idle workload). We see that the CPU utilization
of the MXContainer is around 90-100% most of the time, thanks to
efficiently multiplexing many function invocations in the container.
The CPU utilization of the baseline container is highly fluctuating
and often very low.

Since the MXContainer already drives the system to near 100%
container CPU utilization, accepting more ready function invoca-
tions to compete for cores would only lead to CPU contention. Such
contention would degrade performance. To validate this point, we
conducted a sensitivity analysis by allowing the OS to schedule
more ready-to-run function invocations than the amount of cores
owned by the MXContainer (Section 5.1). It can be shown that, al-
lowing 20% and 50% more ready requests to contend for scheduling,
increases the tail latency by 1.6X and 4X, respectively.

8.2.2 System Throughput. The higher CPU and memory efficiency
results in improved system throughput. We define System Through-
put as the number of concurrent requests that the system can pro-
cess before the average response time becomes twice that of an

0 2 4 6 8 10
Time (s)

0

20

40

60

80

100

CP
U

Ut
il

(%
)

MXContainer Baseline Container

(a) CNN-serv (least idle workload)

0 2 4 6 8 10
Time (s)

0

20

40

60

80

100

CP
U

Ut
il

(%
)

MXContainer Baseline Container

(b) CreateOrd (most idle workload)

Figure 12: Container CPU utilization over time.

unloaded system. We show the value in Table 2, based on workload
classes. MXFaaS increases the average throughput by 4.8× over the
baseline.

Table 2: System throughput in MXFaaS and in the baseline.

Workloads Baseline MXFaaS Improvement
(Req/s) (Req/s) (Times)

ML-functions 900 4100 4.6
Img/Video Processing 1250 6000 4.8
WebServices 1800 9000 5.0
TrainTicket Apps 200 900 4.5
Average 1037.5 5000.0 4.8

8.2.3 I/O Bandwidth Savings. We measure the effect of MXFaaS’
I/O sharing technique. Figure 13 shows, for Baseline and MXFaaS,
a histogram of the latency to fetch the data from global storage.
The figure corresponds to the ImgRot function under the high
system load. The two designs that we compare include the recently-
proposed caching scheme in [64]. From the figure, it can be shown
that MXFaaS reduces the median latency from 0.49s to 0.34s. The
effect on the tail latency is even more substantial: the latency de-
creases from 5.81s to 1.76s. The reason is that I/O combining relaxes
the pressure on the network and on remote storage. We also see
that a large number of MXFaaS requests have very low latency, as
a result of hitting in the MSHT (Section 5.2).

0 1 2 3 4 5 6
Data Fetch Latency [s]

0.0
0.1
0.2
0.3
0.4
0.5

Pr
ob

ab
ilit

y Baseline
MXFaaS

Figure 13: Histogram of data fetch latency for the ImgRot
function.

To pick the value of 𝑇𝑚𝑒𝑟𝑔𝑒 , we performed a sensitivity study.
As we increase 𝑇𝑚𝑒𝑟𝑔𝑒 , the fraction of merged I/Os also increases.
However, the tail latency of the data fetches also increases. We pick
a 𝑇𝑚𝑒𝑟𝑔𝑒 value equal to 1ms, which merges substantial requests
without affecting the tail latency much. Figure 14 shows the fraction
of merged I/Os and the tail latency of data accesses for the ImgRot
function and the high load, as we vary 𝑇𝑚𝑒𝑟𝑔𝑒 . We see that, for the
chosen 𝑇𝑚𝑒𝑟𝑔𝑒 value, MXFaaS merges 46% of I/Os.

100 101 102 103

Tmerge [ms]
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

er
ge

d
I/O

s

Fraction of merged I/Os
Tail Data Access Latency [s]

0.0

0.5

1.0

1.5

2.0

Ta
il

La
te

nc
y

[s
]

Figure 14: Sensitivity study of𝑇𝑚𝑒𝑟𝑔𝑒 for the ImgRot function.

The percentage of merged I/Os depends on the data fetch latency
and the system load. Across all applications and loads, MXFaaS
reduces the number of I/Os by 24%-83%, with an average of 52%. On

MXFaaS: Resource Sharing in Serverless Environments for Parallelism and Efficiency ISCA ’23, June 17–21, 2023, Orlando, FL, USA

average, a pending request in the MSHT combines with 6.1 other
requests. Further, a request stalling for 𝑇𝑚𝑒𝑟𝑔𝑒 combines with 3.2
subsequent requests.

8.2.4 Memory/Processor State Reuse. The MXContainer design
enables substantial sharing of memory and processor state across
invocations of the same function. Figure 15 shows the average
memory footprint in baseline and in MXFaaS across all the three
loads. In the figure, the bars are normalized to the footprint in
MXFaaS. The numbers on top of the bars are the absolute values of
the footprint in Baseline and MXFaaS in GBytes. From the figure, it
can be shown that MXFaaS reduces the average memory footprint
of the functions and applications by 3.4× (from 67.2GB to 19.5GB).
Higher loads lead to higher reductions.

LR
-se

rv

CNN-se
rv

RNN-se
rv

ML-t
r

Vid
Con

v
Im

gR
ot

Im
gR

es

Crea
teO

rd
Pay

Ord

Fun
cAv

g

Tck
tApp

Trip
Inf

App

GetL
eft

App

Can
cA

pp

App
Av

g0
1
2
3
4
5

No
rm

. M
em

Fp
rin

t

57 123
33

236
62

10 11 4 8
42 115

140 40
35

85

16 39 14 55 12 6 6 2 4 14 37 57 14 17 32

Baseline MXFaaS

Figure 15: Normalized memory footprint in baseline and in
MXFaaS averaged across all three loads. The numbers on top
of the bars are the absolute values in GB.

To reason about the branch and cache state reuse, we use the
hardware performance counters [59] of the servers to measure the
number of misses in the branch predictor and in the caches. We
consider two cases: MXFaaS deliberately schedules the requests for
the same function on the same set of cores (Case 1), andMXFaaS lets
the OS schedule the requests on any currently available core (Case
2). Figure 16 shows the measured Misses Per KInstruction (MPKI) in
L1 caches, L2 caches, and branch predictor, and the average response
time of requests in Case 1 normalized to those in Case 2. The figure
shows data for each function. On average, MXFaaS reduces the
L1, L2 and branch MPKI by 46%, 43%, and 45%, respectively, which
translates into a 30% reduction in the response time.

LR-serv
CNN-serv

RNN-serv ML-tr
VidConv

ImgRot
ImgRes

CreateOrd
PayOrd

FuncAvg0.0
0.2
0.4
0.6
0.8

No
rm

al
ize

d
M

PK
I

L1$ L2$ BranchPredictor RspTime

Figure 16: Microarchitectural state reuse in MXFaaS and its
impact on the response time of requests.

8.3 Scalability
MXFaaS is a scalable serverless platform. We conduct a scalability
experiment with three cluster sizes: 10, 15 (default) and 20 servers.
Figure 17 shows the speedup of MXFaaS over baseline across all
benchmarks with medium load for the three cluster sizes. As the
cluster size increases, MXFaaS achieves higher relative speedups
over the same-size baseline. On average, MXFaaS speeds up the
execution by 4.4×, 5.2× and 6.1× with 10, 15 and 20-server clusters.

LR
-se

rv

CNN-se
rv

RNN-se
rv

ML-t
r

Vid
Con

v
Im

gR
ot

Im
gR

es

Crea
teO

rd
Pay

Ord

Fun
cAv

g

Tck
tApp

Trip
Inf

App

GetL
eft

App

Can
cA

pp

App
Av

g0

2

4

6

Av
g.

 S
pe

ed
up

Functions Applications
10-servers 15-servers 20-servers

Figure 17: Speedup of MXFaaS over the baseline for different
cluster sizes.

8.4 Comparing to Proactive Container Creation
There are several techniques that reduce FaaS startup-time by pre-
dicting which containers will be needed next, and proactively allo-
cating and preparing them [12, 17, 26, 66, 70]. Instead of comparing
MXFaaS with each technique individually, we compare MXFaaS
with the best-case scenario: the prediction technique is 100% correct
and there is no cold-start time—if there is enough memory space
for the container.

Figure 18 compares MXFaaS with this best-case scenario. It
shows the average response time of functions under low, medium
and high loads. We show a representative function (CNN-serv) and
application (TcktApp). On average across the three loads, MXFaaS
reduces the response time over this ideal scheme by 1.6× for CNN-
serv and 1.7× for TcktApp. Across all benchmarks and loads, the
reduction is 2.1× (or 2.9× if we only consider high load). There are
two reasons for the baseline’s losses. First, under medium and high
loads, available memory becomes scarce. Hence, some requests
need to wait to allocate a container till some memory is freed-up.
MXFaaS is not as constrained by memory (Section 8.2.4). Second,
under any load, MXFaaS benefits from processor cycle and I/O
bandwidth sharing.

Low Load Medium Load High Load0.0

0.2

0.4

0.6

0.8

Av
g.

 R
sp

. T
im

e
(s

) Perfect Prediction MXFaaS

(a) CNN-serv

Low Load Medium Load High Load0

2

4

6

8

Av
g.

 R
sp

. T
im

e
(s

) Perfect Prediction MXFaaS

(b) TcktApp

Figure 18: Average response time of two benchmarks in MX-
FaaS and in an ideal environment with perfect pre-warming.

9 DISCUSSION
It is straightforward to support the execution of function invo-
cations as threads in an MXContainer instead of processes. We
implement such threading support and measure its performance.
Replacing forked processes with threads improves the performance
of our benchmarks by 11% on average. However, threads (i) have
weaker isolation and (ii) require the function implementations to
be thread safe. As indicated by AWS [8], the thread model raises
correctness issues in functions that modify global variables.

Languages such as Java and NodeJS do not support the fork
semantics. For these languages, the MXContainer dispatcher cannot
fork handlers but needs to prepare the initialization of each handler,

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas

for example, by loading modules. We are working on additional
support for these languages. One can choose to use thread-based
MXContainers for these languages if not providing strong isolation
and thread-safety are not concerns.

10 RELATEDWORK
10.1 Serverless Systems
Work on serverless systems falls into four categories.
Snapshotting. SEUSS [14] and REAP [75] reduce the cold-start
overhead by spawning a VM from a previously-generated snapshot.
These techniques attain large overhead reductions, although they
still have startup times of 70-1000ms. They are not optimized for
high concurrency. As the number of concurrent instances increases,
the startup overhead becomes larger due to the snapshot-reading
contention. They do not exploit the requests’ idle time.
Fork from a template. SOCK [52] and Catalyzer’s sfork [18] rely
on the assumption that containers for different functions have a lot
of data in common. Hence, they create a new container to serve
a request by forking from a template container shared across all
functions. Then, they insert function-specific code in the forked
container, execute the function-specific initialization and only then
execute the handler. These schemes reduce, but not remove, the
cold-start overhead. They hurt performance by executing function-
specific initialization code for every concurrent invocation. In ad-
dition, they do not share read-only function-specific initialization
data, which often has a large footprint. They do not optimize sched-
uling or manage concurrency. Finally, SOCK requires a special
container type, while sfork in Catalyzer requires OS modifications.
Thread/process-level isolation. These schemes use different ab-
stractions for function execution, including container [5, 29, 37],
process [1, 40, 52], thread [31, 37], and software-based fault isola-
tion [13, 71]. To reduce cold-start overhead, some schemes relax the
isolation boundaries and, in a given container, allow the execution
of multiple invocations of the same function (Nightcore [31]) or the
execution of the different functions of an application (SAND [1]
and Faastlane [40]).

The approach used by SAND and Faastlane does not handle effi-
ciently the common case of a function that is shared amongmultiple
applications. First, the shared function cannot scale independently
of other functions in the application. Second, the shared function
needs to be copied to all the containers that serve the different
applications. Another shortcoming of including all the functions
of an application in a container is that the size of the container
is very large, as it has to include the support for potentially dif-
ferent runtimes, languages, libraries, and packages. Furthermore,
functions can come from different security domains, and executing
them together in the same container may leak.

Nightcore executes concurrent invocations of the same function
in a container with separate processes or threads. It provides sub-
optimal concurrency management because (1) a container allows
only a predetermined number of requests to be dispatched and
(2) the container queues requests above this threshold until prior
requests are completed. Nightcore, like the previous two schemes,
does not exploit the fact that a function spends significant time idle
and thus, wastes available CPU resources. Finally, Nightcore forks
processes as soon as the libraries are loaded—hence, processes are

unable to share all the read-only function initialization data that is
independent of individual invocations of the function.
Predictions. Some startup-time reduction techniques [12, 17, 26, 66,
70] predict which containers will be needed next, and proactively
allocate and prepare them. In practice, accurate prediction is hard.
Unless the accuracy is high, the response time grows significantly
and resources are wasted. Further, when the load is high, available
memory becomes scarce. Hence, evenwith high prediction accuracy,
some requests need to wait to obtain memory.

10.2 Other Related Work
Microsecond-scale core allocation and scheduling. Recent
works have developed 𝜇s-scale core allocation and scheduling tech-
niques to improve CPU efficiency [23, 33, 57, 61]. They aggressively
reallocate cores to minimize idle time. Unlike MXFaaS, they are
agnostic to serverless workloads and do not consider the synergies
between concurrent function invocations as MXContainer does.
Many of them require OS changes, while MXFaaS does not.
Optimization of I/O and RPC.Many optimizations have been de-
veloped to reduce the overheads of storage I/O and RPC invocations
of functions. They include data caching to reduce remote storage ac-
cesses [36, 45, 60, 64, 73, 77] and minimizing RPC overhead [31, 49].
MXFaaS’ I/O access coalescing is complementary to these efforts, as
it reduces I/O bandwidth and communication overhead originating
from the containers. Other work [28, 43, 76] reduces the cost of
distributing container images under bursty workloads. MXFaaS
reduces data volumes as all the invocations of the same function in
a given server share the container image.
Startup-time reduction. Some proposals reduce startup latency
by proactively preparing function containers to hide latency [12, 17,
26, 66, 70], keeping containers warm [46, 70], or using snapshots
and caches [14, 18, 52, 75]. While MXFaaS is complementary to
these techniques, it does not benefit as much from them as other
systems, since these techniques mostly impact only the first func-
tion invocation of the MXContainer.

11 CONCLUDING REMARKS
In this paper, we introduced MXFaaS, a new serverless platform
design where concurrently-executing invocations of the same func-
tion share processor cycles, I/O bandwidth, and memory/processor
state. MXFaaS introduces the new MXContainer abstraction, which
enables substantial improvements in processor, I/O, and memory
efficiency in serverless environments. Our evaluation showed that,
with MXFaaS, serverless environments are much more efficient.
Compared to a state-of-the-art baseline, MXFaaS on average sped-
up the execution by 5.2×, reduced the P99 tail latency by 7.4×,
and improved the throughput by 4.8×. In addition, it reduced the
average memory usage by 3.4×.

ACKNOWLEDGMENTS
This work was supported in part by NSF under grants CNS 1956007
and CCF 2107470; by ACE, one of the seven centers in JUMP 2.0,
a Semiconductor Research Corporation (SRC) program sponsored
by DARPA; and by the IBM-Illinois Discovery Accelerator Insti-
tute. We thank Feiran (Alex) Qin for helping with the MXFaaS
implementation on KNative.

MXFaaS: Resource Sharing in Serverless Environments for Parallelism and Efficiency ISCA ’23, June 17–21, 2023, Orlando, FL, USA

A ARTIFACT APPENDIX
A.1 Abstract
Our artifact includes the prototype implementation of MXContain-
ers, integration of MXFaaS with KNative, the scripts to perform the
characterization study on the open-source production-level traces
and serverless benchmarks, and the experiment workflow to run
these workloads.

A.2 Artifact Check-list (Meta-information)
• Program: MXContainers, MXFaaS atop of KNative
• Run-time environment: Ubuntu 18.04 or higher, Docker, Ku-
bernetes (minikube for testing), KNative

• Hardware: Intel or AMD processors
• Metrics: Latency, throughput, CPU and mem. utilization.
• Experiments: Characterization, KNative implementation
• How much disk space required: 32GB
• How much time is needed to prepare workflow: 2h
• How much time is needed to complete experiments: 1h
• Publicly available: Yes
• Code licenses: MIT License

A.3 Description
We have two main software artifacts.

First, we provide scripts to reproduce our characterization study.
The scripts include the analyses of (i) the open-source production-
level traces from Azure, and (ii) the open-source serverless bench-
marks from FunctionBench. The scripts analyze (i) the request
burstiness in serverless environments, (ii) the idle time of server-
less functions, (iii) the breakdown of memory footprint of serverless
functions, and (iv) the bursty access pattern in to the remote storage.

Second, we provide our implementation of MXFaaS: a novel
serverless platform built upon KNative. MXFaaS includes two main
components: (i) MXContainers that support efficient CPU, I/O and
memory sharing across invocations of the same function, and (ii)
Node Controller that supports core assignment across collocated
MXContainers and extends auto-scaling features.

A.3.1 How to Access. The source code and benchmarks are hosted
on Github: jovans2/MXFaaS_Artifact.

A.3.2 Hardware Dependencies. This artifact was tested on Intel
(Haswell, Broadwell, Skylake), and AMD EPYC processors: Rome,
Milan. Each processor has at least 8 cores.

A.3.3 Software Dependencies. This artifact requires Ubuntu 18.04+,
Docker 23.0.1, minikube v1.29.0, and KNative.

A.4 Installation
First, clone our artifact repository:
git clone \

https://github.com/jovans2/MXFaaS_Artifact.git

Setting up the environment. In the main directory of the reposi-
tory, script setup.sh installs all the software dependencies.
Execute: ./setup.sh.
The script will first install Docker and set up all the required priv-
ileges. Then, it will install minikube, as a local Kubernetes, con-
venient for testing purposes. Finally, it will install KNative. The

script will ask twice to choose one of multiple options. In both
times choose the default value.
Once the installation is completed, open a new terminal and execute
the following command minikube tunnel.
Downloading open-source production-level traces. To repro-
duce our characterization study we need open source traces from
the Azure’s production workload. We need
(i) Azure Functions Blob Access Trace, and
(ii) Azure Functions Invocation Trace.

Download the traces in the characterization directory of our
repository by running ./download-traces.sh.
Installing application specific libraries. To locally install all the
libraries needed by our Python applications,
Execute: ./install-libs.sh in the characterization directory.

A.5 Experiment Workflow
Characterization study.After the Azure’s traces are in the charac-
terization directory, to run all of our characterization experiments
you need to execute ./characterize.sh. This script will first an-
alyze the request burstiness and bursty storage access pattern from
Azure’s traces (Figures 2 and 5), then it will analyze the serverless
benchmarks from functions directory (Figures 3 and 4).
KNative prototype. Running ./deploy.sh in the KNative pro-
totype directory deploys the target functions as MXContainers on
KNative. To test if all functions are successfully deployed, run kn
service list. It should show all functions and their URLs. After
2 minutes, the flag READY should be set to True. Each function can
be invoked with curl <ip-addr>. To test all functions at once,
run python3 knative-all.py.
Next, we need to test the performance of MXContainers. There
are three loads we test: Low, Medium and High. All loads use the
Poission distribution. The scripts to run the experiments are located
in the experiments directory. To run all the experiments at once
execute python3 run-all.py.

A.6 Evaluation and Expected Results
Characterization study. Running ./characterize.sh in the
characterization directory, creates the following output files:
azure_burstiness.png, azure_blobs.png, and funcs.txt.

The first two figures are Figures 2 and 5 from our paper. The
third file contains the idle time and memory breakdown for each
of the evaluated functions. The expected output is in
expected-output-funcs.txt.
Latency measurements. Running python3 run-all.py in the
experiments directory produces the output file: run-all-out.txt.
The file contains for each of the tested functions and for each of
the tested loads: average latency, median latency and tail latency.
The reference output is in the expected-output-all.txt.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://github.com/jovans2/MXFaaS_Artifact
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsBlobDataset2020.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsInvocationTrace2021.md
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas

REFERENCES
[1] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,

Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance Serverless Computing. In 2018 USENIX Annual Technical Conference
(USENIX ATC ’18).

[2] Amazon AWS. 2023. AWS Lambda. https://aws.amazon.com/lambda/.
[3] LixiangAo, Liz Izhikevich, GeoffreyM. Voelker, andGeorge Porter. 2018. Sprocket:

A Serverless Video Processing Framework. In Proceedings of the 2018 ACM Sym-
posium on Cloud Computing (SoCC ’18).

[4] Lixiang Ao, George Porter, and Geoffrey M. Voelker. 2022. FaaSnap: FaaS Made
Fast Using Snapshot-Based VMs. In Proceedings of the Seventeenth European
Conference on Computer Systems (EuroSys ’22).

[5] Apache OpenWhisk. 2023. https://openwhisk.apache.org/.
[6] AWS. 2023. AWS Lambda Anti-Patterns: Lambda functions calling Lambda

functions. https://docs.aws.amazon.com/lambda/latest/operatorguide/functions-
calling-functions.html.

[7] AWS. 2023. AWS Lambda Anti-Patterns: Syn-
chronous waiting within a single Lambda function.
https://docs.aws.amazon.com/lambda/latest/operatorguide/synchronous-
waiting.html.

[8] AWS. 2023. AWS Lambda: Comparing the Effect of Global Scope.
https://docs.aws.amazon.com/lambda/latest/operatorguide/global-scope.html.

[9] AWS. 2023. AWS Samples: AWS Serverless Workshops. https://github.com/aws-
samples/aws-serverless-workshops/.

[10] AWS. 2023. Security Overview AWS Lambda.
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-overview-
aws-lambda/security-overview-aws-lambda.pdf.

[11] Azure. 2023. Azure Public Dataset. https://github.com/Azure/AzurePublicDataset.

[12] Vivek M. Bhasi, Jashwant Raj Gunasekaran, Prashanth Thinakaran, Cyan Subhra
Mishra, Mahmut Taylan Kandemir, and Chita Das. 2021. Kraken: Adaptive
Container Provisioning for Deploying Dynamic DAGs in Serverless Platforms.
In Proceedings of the ACM Symposium on Cloud Computing (SoCC ’21).

[13] Sol Boucher, Anuj Kalia, David G. Andersen, andMichael Kaminsky. 2018. Putting
the “Micro” Back in Microservice. In Proceedings of the 2018 USENIX Annual
Technical Conference (USENIX ATC ’18).

[14] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and
Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to Make Serverless
Fast. In Proceedings of the Fifteenth European Conference on Computer Systems
(EuroSys ’20).

[15] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and
Torsten Hoefler. 2021. SeBS: A Serverless Benchmark Suite for Function-as-a-
Service Computing. In Proceedings of the 22nd International Middleware Conference
(Middleware ’21).

[16] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Proceedings of the 26th ACM Symposium on Operating Systems Principles (SOSP
’17).

[17] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2020. Xanadu: Mit-
igating Cascading Cold Starts in Serverless Function Chain Deployments. In
Proceedings of the 21st International Middleware Conference (Middleware ’20).

[18] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,
Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond Startup for
Serverless Computing with Initialization-Less Booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20).

[19] Fission: Open source Kubernetes-native Serverless Framework. 2023.
https://fission.io/.

[20] Fn Project. 2023. https://fnproject.io/.
[21] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos

Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From Laptop to Lambda:
Outsourcing Everyday Jobs to Thousands of Transient Functional Containers. In
Proceedings of the 2019 USENIX Annual Technical Conference (USENIX ATC ’19).

[22] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-
maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing
Using Thousands of Tiny Threads. In Proceedings of the 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’17).

[23] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020. Caladan:
Mitigating Interference at Microsecond Timescales. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI ’20).

[24] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: Keeping Serverless
Computing Alive with Greedy-Dual Caching. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’21).

[25] Google. 2023. Google Cloud Functions. https://cloud.google.com/functions.

[26] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan C. Nachiappan,
Mahmut Taylan Kandemir, and Chita R. Das. 2020. Fifer: Tackling Resource
Underutilization in the Serverless Era. In Proceedings of the 21st International
Middleware Conference (Middleware ’20).

[27] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao, and
Yungang Bao. 2019. Who Limits the Resource Efficiency of My Datacenter:
An Analysis of Alibaba Datacenter Traces. In Proceedings of the International
Symposium on Quality of Service (IWQoS ’19).

[28] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. 2016. Slacker: Fast Distribution with Lazy Docker Containers.
In Proceedings of the 14th USENIX Conference on File and Storage Technologies
(FAST ’16).

[29] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-
mani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016. Serverless
Computation with OpenLambda. In Proceedings of the 8th USENIX Conference on
Hot Topics in Cloud Computing (HotCloud ’16).

[30] IBM. 2023. IBM Cloud Functions. https://cloud.ibm.com/functions/.
[31] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scalable Server-

less Computing for Latency-Sensitive, Interactive Microservices. In Proceedings of
the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’21).

[32] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic,
Ankit Singla, Wentao Wu, and Ce Zhang. 2021. Towards Demystifying Serverless
Machine Learning Training. In Proceedings of the 2021 International Conference
on Management of Data (SIGMOD ’21).

[33] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Maz-
iéres, and Christos Kozyrakis. 2019. Shinjuku: Preemptive Scheduling for µsecond-
scale Tail Latency. In Proceedings of the 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’19).

[34] Mahmoud Khairy, Ahmad Alawneh, Aaron Barnes, and Timothy G. Rogers.
2022. SIMR: Single Instruction Multiple Request Processing for Energy-Efficient
Data Center Microservices. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO ’22).

[35] Jeongchul Kim and Kyungyong Lee. 2019. FunctionBench: A Suite of Workloads
for Serverless Cloud Function Service. In Proceedings of the IEEE 12th International
Conference on Cloud Computing (CLOUD ’19).

[36] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Serverless
Analytics. In Proceedings of the 13th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’18).

[37] Knative. 2023. https://knative.dev/docs/.
[38] KNative Serving Activator. 2023. https://github.com/knative/serving/tree/ -

main/pkg/activator.
[39] KNative Serving Autoscaler. 2023. https://github.com/knative/serving/tree/ -

main/pkg/autoscaler.
[40] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. 2021. Faast-

lane: Accelerating Function-as-a-Service Workflows. In Proceedings of the 2021
USENIX Annual Technical Conference (USENIX ATC ’21).

[41] Kubeless: The Kubernetes Native Serverless Framework. 2023.
https://kubeless.io/.

[42] Senthil Kumar and Ajit Puthiyavettle. 2021. Architecting a
Highly Available Serverless, Microservices-Based Ecommerce Site.
https://aws.amazon.com/blogs/architecture/architecting-a-highly-available-
serverless-microservices-based-ecommerce-site/.

[43] Huiba Li, Yifan Yuan, Rui Du, Kai Ma, Lanzheng Liu, and Windsor Hsu. 2020.
DADI: Block-Level Image Service for Agile and Elastic Application Deployment.
In Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC
’20).

[44] Zijun Li, Quan Chen, Shuai Xue, Tao Ma, Yong Yang, Zhuo Song, and Minyi Guo.
2020. Amoeba: QoS-Awareness and Reduced Resource Usage of Microservices
with Serverless Computing. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS ’20).

[45] Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan Cheng, Wenli Zheng, and
Minyi Guo. 2022. FaaSFlow: Enable EfficientWorkflow Execution for Function-as-
a-Service. In Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’22).

[46] Ping-Min Lin and Alex Glikson. 2019. Mitigating Cold Starts in Serverless
Platforms: A Pool-Based Approach. CoRR abs/1903.12221 (2019). arXiv:1903.12221
http://arxiv.org/abs/1903.12221

[47] Qixiao Liu and Zhibin Yu. 2018. The Elasticity and Plasticity in Semi-
Containerized Co-Locating Cloud Workload: A View from Alibaba Trace. In
Proceedings of the 2020 ACM Symposium on Cloud Computing (SoCC ’18).

[48] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing Microservice De-
pendency and Performance: Alibaba Trace Analysis. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC ’21).

https://arxiv.org/abs/1903.12221
http://arxiv.org/abs/1903.12221

MXFaaS: Resource Sharing in Serverless Environments for Parallelism and Efficiency ISCA ’23, June 17–21, 2023, Orlando, FL, USA

[49] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan Minocha, Sameh
Elnikety, Saurabh Bagchi, and Somali Chaterji. 2022. WISEFUSE: Workload Char-
acterization and DAG Transformation for Serverless Workflows. In Proceedings of
the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS/PERFORMANCE
’22).

[50] Microsoft. 2023. Microsoft Azure Functions. https://azure.microsoft.com/en-
gb/services/functions/.

[51] Goncalo Neves. 2017. Keeping Functions Warm - How To Fix AWS Lambda Cold
Start Issues. https://www.serverless.com/blog/keep-your-lambdas-warm.

[52] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK: Rapid Task Provision-
ing with Serverless-Optimized Containers. In Proceedings of the 2018 USENIX
Annual Technical Conference (USENIX ATC ’18).

[53] OpenFaaS. 2023. https://docs.openfaas.com/.
[54] OpenWhisk Invoker. 2023. https://github.com/apache/openwhisk/tree/master/

-core/invoker.
[55] OpenWhisk Load Balancer. 2023. https://github.com/apache/openwhisk/tree/

-master/core/controller/src/main/scala/org/apache/openwhisk/core/ -
loadBalancer.

[56] OpenWhisk Python Runtime. 2023. https://github.com/apache/openwhisk-
runtime-python.

[57] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-sensitive
Datacenter Workloads. In Proceedings of the 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI ’19).

[58] Linux Manual Page. 2023. ld.so(8). https://man7.org/linux/man-
pages/man8/ld.so.8.html.

[59] Linux Manual Page. 2023. perf-stat(1). https://man7.org/linux/man-
pages/man1/perf-stat.1.html.

[60] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In Proceedings of the 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’19).

[61] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout. 2018.
Arachne: Core-Aware Thread Management. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI ’18).

[62] Redis. 2023. https://redis.io/.
[63] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, RandyH. Katz, andMichael A.

Kozuch. 2012. Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis. In Proceedings of the 3rd ACM Symposium on Cloud Computing (SoCC
’12).

[64] Francisco Romero, Gohar Irfan Chaudhry, Inigo Goiri, Pragna Gopa, Paul Batum,
Neeraja Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo Bianchini.
2021. Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications. In
Proceedings of the ACM Symposium on Cloud Computing (SoCC ’21).

[65] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2021.
INFaaS: Automated Model-less Inference Serving. In Proceedings of the 2021
USENIX Annual Technical Conference (USENIX ATC ’21).

[66] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. IceBreaker: Warming
Serverless Functions Better with Heterogeneity. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’22).

[67] David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sandberg, and
Boris Grot. 2022. Lukewarm Serverless Functions: Characterization and Opti-
mization. In Proceedings of the 49th Annual International Symposium on Computer
Architecture (ISCA ’22).

[68] Serverless Train Ticket. 2023. https://github.com/FudanSELab/serverless-
trainticket.

[69] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architectural
Implications of Function-as-a-Service Computing. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’19).

[70] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In Proceedings of the 2020 USENIX
Annual Technical Conference (USENIX ATC ’20).

[71] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation for
Efficient Stateful Serverless Computing. In Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC ’20).

[72] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, MohammedDanish Shaikh,
Shivaram Venkataraman, and Aditya Akella. 2021. Atoll: A Scalable Low-Latency
Serverless Platform. In Proceedings of the ACM Symposium on Cloud Computing
(SoCC ’21).

[73] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph E. Gonzalez, JosephM. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
Stateful Functions-as-a-Service. Proceedings of the VLDB Endowment (2020).

[74] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth Lanka.
2020. Sequoia: Enabling Quality-of-Service in Serverless Computing. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing (SoCC ’20).

[75] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris
Grot. 2021. Benchmarking, Analysis, and Optimization of Serverless Function
Snapshots. In Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS
’21).

[76] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang, Huiba
Li, Rui Du, and Yue Cheng. 2021. FaaSNet: Scalable and Fast Provisioning of
Custom Serverless Container Runtimes at Alibaba Cloud Function Compute. In
Proceedings of the 2021 USENIX Annual Technical Conference (USENIX ATC ’21).

[77] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht, Dimitrios
Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. 2020. InfiniCache: Exploiting
Ephemeral Serverless Functions to Build a Cost-Effective Memory Cache. In
Proceedings of the 18th USENIX Conference on File and Storage Technologies (FAST
’20).

[78] Sam Wilson and Desta Pickering. 2021. A Guide to Developing Server-
less Ecommerce Workflows for Commercetools with AWS Lambda.
https://aws.amazon.com/blogs/industries/a-guide-to-developing-serverless-
ecommerce-workflows-for-commercetools-with-aws-lambda/.

[79] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang Zhao,
Xingzhen Chen, and Keqiu Li. 2022. INFless: A Native Serverless System for Low-
latency, High-throughput Inference. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’22).

[80] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao
Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing Serverless Platforms
with ServerlessBench. In Proceedings of the ACM Symposium on Cloud Computing
(SoCC ’20).

[81] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh El-
nikety, Christina Delimitrou, and Ricardo Bianchini. 2021. Faster and Cheaper
Serverless Computing on Harvested Resources. In Proceedings of the International
Symposium on Operating Systems Principles (SOSP ’21).

[82] Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou, and Keqiu Li. 2021. Understand-
ing, Predicting and Scheduling Serverless Workloads under Partial Interference.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’21).

[83] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun
Zhao. 2018. Benchmarking Microservice Systems for Software Engineering Re-
search. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings (ICSE ’18).

	Abstract
	1 Introduction
	2 Background: FaaS Platform
	3 Characterizing FaaS Environments
	3.1 Inefficient Patterns
	3.2 Workload and Execution Characteristics
	3.3 Implications

	4 MXFaaS Overview
	5 MXFaaS Design
	5.1 MXContainers for Sharing Processor Cycles
	5.2 MXContainers for Sharing I/O Bandwidth
	5.3 MXContainers for Sharing Memory and Processor State

	6 MXFaaS Implementation
	6.1 Function Runtime
	6.2 Serverless Platform
	6.3 Multitenancy and Security Implications

	7 Methodology
	8 Evaluation
	8.1 End-to-end Latency Reduction
	8.2 Resource Efficiency
	8.3 Scalability
	8.4 Comparing to Proactive Container Creation

	9 Discussion
	10 Related Work
	10.1 Serverless Systems
	10.2 Other Related Work

	11 Concluding Remarks
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-list (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Methodology

	References

