QMA The normalized eigenfunctions of the Hydrogen-atom Hamiltonian H are

$$\psi_{n,l,m}(r,\theta,\phi) = \sqrt{\left(\frac{2}{na_0}\right)^3 \left(\frac{(n-l-1)!}{2n(n+l)!}\right)} e^{-\rho} \rho^l L_{n-l-1}^{2l+1}(\rho) Y_m^l(\theta,\phi).$$

Here a_0 is the Bohr radius, $\rho = 2r/(na_0)$, Y_m^l is the normalized spherical harmonic, and the generalized Laguerre polynomial has $L_n^{\alpha}(0) = (n+\alpha)!/(n!\alpha!)$.

Your task is to evaluate the effect of a perturbation $\Delta H = -A\delta^3(\mathbf{r})$ (a contribution to the Lamb shift) on the energy eigenvalues associated with the above eigenfunctions. You may ignore the proton spin.

- a) For the general eigenstate, write down the expression giving the firstorder energy shift due to the perturbation. State for which values of n, l, and m the first-order shift is nonzero.
- b) After incorporating spin-orbit corrections, the hydrogen energy eigenvalues depend on n and the total angular momentum j, but not separately on the orbital number l. For a given n, the states with the smallest j have the lowest energy. Incorporating this knowledge—but ignoring the effect of ΔH —how many degenerate states are there for the lowest n = 2 level, and what is the associated value of j?
- c) Write down the wavefunction, including the spin state of the electron, for the lowest n = 2 level states you found in (b). Write your answer as as linear combination of terms of the form $\psi_{nlm}|\pm\rangle$ where $|\pm\rangle$ is the electron spin state.
- d) Using degenerate perturbation theory, find the splitting caused by the perturbation (to first order in A) between the degenerate levels you found in (b).

Useful: Clebsch-Gordan coefficients for general j_1 and $j_2 = 1/2$

$\langle j_1, m_1, j_2 = 1/2, m_2 j, m \rangle$		
	$m_2 = 1/2$	$m_2 = -1/2$
$j = j_1 + 1/2$	$\sqrt{\frac{j_1 + m + 1/2}{2j_1 + 1}}$	$\sqrt{\frac{j_1 - m + 1/2}{2j_1 + 1}}$
$j = j_1 - 1/2$	$-\sqrt{\frac{j_1 - m + 1/2}{2j_1 + 1}}$	$\sqrt{\frac{j_1 + m + 1/2}{2j_1 + 1}}$