CMA Consider a small bob of mass μ at the end of a massless rod of length L which is attached to the bottom of a rolling cart. The cart is fixed to a wall via a spring with spring constant k.

a) Find a Lagrangian which describes the motion of this system in terms of the linear displacement x of the cart and the angular displacement θ of the rod from the vertical.
b) Use your Lagrangian to find the equations of motion for small oscillations about the equilibrium point $x=\theta=0$. Express your answer in the form of the matrix equation

$$
\mathbf{M} \ddot{\mathbf{q}}+\mathbf{K q}=0, \quad \mathbf{q}=\left[\begin{array}{l}
x \\
\theta
\end{array}\right]
$$

where the matrices \mathbf{M} and \mathbf{K} should be specified in terms of μ, m, k, L, and g.
c) Now consider the particular case where the matrices become

$$
\mathbf{M}=\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right], \quad \mathbf{K}=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

What are the normal mode frequencies for this system?
d) If the system from (c) starts from rest at

$$
\mathbf{q}=\left[\begin{array}{c}
0 \\
\theta_{0}
\end{array}\right]
$$

with θ_{0} small, what are the solutions $x(t), \theta(t) ?$

