Recall that in a grand canonical ensemble of identical bosons the number of particles in an energy level \(\varepsilon_n \) is

\[
f(\varepsilon_n) = \frac{1}{e^{\beta(\varepsilon_n - \mu)} - 1}, \quad \mu \leq 0.
\]

Consider first free non-relativistic bosons of mass \(m \) confined in a large cubic box of volume \(V \).

a) Write down, in terms of \(\hbar, m \) and \(V \), the expression \(D(\varepsilon)d\varepsilon \) for the number of energy states between \(\varepsilon \) and \(\varepsilon + d\varepsilon \).

b) The total number of particles \(N \) can be written as

\[
N = N_0 + N_{\text{excited}} = N_0 + \int_0^\infty D(\varepsilon)f(\varepsilon)d\varepsilon
\]

where \(N_0 \) is the number of particles in the ground state. For a given \(k_B T = \beta^{-1} \), at what value of \(\mu \) does \(N_{\text{excited}} \) take its maximum possible value? Express this maximum value in terms of \(\Gamma(s)\zeta(s) \) where these functions are defined below.

c) The critical temperature, \(T_c \), is the temperature below which there must be a finite fraction \(N_0/N \) of particles in the ground state. Use your result from part (b) to express \(T_c \) as a function of \(n = N/V \), the number density of particles.

Now consider the same particles confined in a three dimensional harmonic trap

\[
U(x, y, z) = \frac{1}{2}m\omega^2(x^2 + y^2 + z^2).
\]

d) Assuming that the trap is weak (i.e. \(\hbar\omega \ll k_B T \) so that we can regard the energy spectrum as continuous) write down the new density of states \(D(\varepsilon) \).

e) Show that in this case \(T_c \propto N^a \) (and not to \(n = N/V \)) and find \(a \).

Useful Formulae:

\[
\int_0^\infty \frac{t^{s-1}}{e^t - 1} dt = \Gamma(s)\zeta(s).
\]

where \(\Gamma(s) \) is Euler’s Gamma function and \(\zeta(s) \) is the Riemann zeta function

\[
\zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}, \quad s > 1.
\]