EM1B Consider light propagating through a dielectric material in the presence of a magnetic field \mathbf{B}_{0} pointing along the z axis. Model the material as a collection of harmonically-bound electrons of mass m and number density ρ. Each electron satisfies Newton's equations with a force

$$
\mathbf{F}(t)=-m \omega^{2} \mathbf{x}(t)-e \mathbf{E}-e \frac{d \mathbf{x}(t)}{d t} \times \mathbf{B}_{0}
$$

Assume that the the electromagnetic plane wave propagates in the z direction and is circularly polarized with complex form

$$
\mathbf{E}=E \frac{1}{\sqrt{2}}\left(\mathbf{e}_{x} \pm i \mathbf{e}_{y}\right) e^{i k z-i \omega t}
$$

where $\mathbf{e}_{x}, \mathbf{e}_{y}$ are unit vectors in the x and y directions respectively.
a) Show that the dipole moment of a single electron located at the origin as a function of time is of the form $\mathbf{d} \equiv e \mathbf{x}(t)=d\left(\mathbf{e}_{x} \pm i \mathbf{e}_{y}\right) e^{-i \omega t}$ and find the constant d. (You may assume that the electron has been exposed to the wave for a long time)
b) Use this dipole moment to find the polarization \mathbf{P} (the average dipole moment per unit volume) and the electric displacement $\mathbf{D}=\epsilon_{0} \mathbf{E}+\mathbf{P}$.
c) Use Maxwell's equations in a dielectric medium to find the wave number $k=\omega / v_{ \pm}$for the two polarizations (\pm)in $\mathbf{E}(t)$. Note that the propagation speeds $v_{ \pm}$will depend on ω.
d) Linearly polarized light, with the electric field pointing in the x direction, and frequency ω, is incident on a slab of this material of thickness w in the z-direction. Find an expression for w as a function of v_{+}, v_{-} such that the light emerges as linearly polarized light pointing in the y direction on the other side of the slab. You need not have solved parts (a-c) to do this part of the problem.

