CMB

A solid sphere of mass m, moment of inertia $I=K m r^{2}$, and radius r rolls without slipping inside a fixed cylinder of radius $R>r$. Initially the ball is held with its point of contact P with the cylinder at an angle $\theta_{\text {max }}$ measured from the lowest point of the cylinder. It is then released and starts to roll.
a) Write down the rolling condition that relates $\dot{\theta}$ to the angular velocity $\dot{\phi}$ of the ball about its center. Use this relation to find expressions for the kinetic energy of the sphere in terms of the angular velocity $\dot{\theta}$ and the coordinate θ.
b) Now find the gravitational potential energy of the sphere in terms of θ and use it to compute the speed v_{CofM} of the centre of mass of the sphere at the moment when it reaches the lowest point $(\theta=0)$ on the cylinder.
c) What is the minimum coefficient of friction $\mu_{\text {min }}$ for which the sphere starts rolling, rather than slipping, at the moment of its release?
d) Either by using a Lagrangian, or by an application of Newton's laws, find the equation of motion in terms of the coordinate θ.
e) Find the frequency of small oscillations of the sphere about $\theta=0$ when $\theta_{\text {max }}$ is small.

