

Novel Non-Invasive Device to Diagnose and Monitor Fibromyalgia

Reece Anderson, Reed Brockstein, Isabelle Guerra, Grace Varan, Xin Wang Bioengineering Department, The Grainger College of Engineering, University of Illinois Urbana-Champaign KATZ Diagnostics

20mm

Schematic of the

light path in our

cuvette testing

Figure 3.

Background

- Fibromyalgia is a disease that manifests in widespread physical and mental pain. It affects 4 million US adults or 2% of the population [1]
- Current diagnostic tools are purely qualitative and therefore diagnosis is subjective. We aim to develop a quantitative metric for diagnosis
- Muscle pressure has been shown to correlate with severity of fibromyalgia symptoms. [2] It is correlated to muscle oxygenation; high muscle pressure leads to capillary restriction and result in hypoxia [3].
- This device seeks to obtain a quantitative measurement of muscle oxygenation to diagnose and monitor fibromyalgia
- Our proposed device will utilize Near-Infrared Spectroscopy (NIRS) to obtain a muscle oxygenation reading
- Light will be emitted into the skin and absorbance will be measured via a photodiode after backscattering

patient (right). Results are statistically significant. [2]

Figure 2. (A) Circuit diagram for the first prototype iteration (B) Circuit diagram for the current prototype (C) First prototype iteration. (D) Current prototype in testing configuration.

Standards			
Standard	Application		
ASTM F3357-19 Standard Guide for Designing Reusable Medical Devices for Cleanability.	Reusability and cleanability		
ISO 10993-1:2018 Biological Evaluation of Medical Devices - Part I: Evaluation and Testing within Risk Management Process	Biological risk management		
ISO 14971:2019 Medical Devices - Application of Risk Management to Medical Devices	Physical and software risk management		
ISO 16142-1:2016 Recognized Essential Principles of Safety and Performance of Medical Devices	General essential safety measures		
IEC 80601-2-71:2015 Medical Electrical Equipment	Electrical and NIRS safety standard		
IEEE 360 Standard for Wearable Consumer Electronic Devices	Wearability, reliability, and safety		

Testing

	Subject 1	Subject 2	Subject 3
Baseline	406 mV	382 mV	317 mV
Нурохіа	337 mV	313 mV	273 mV
% Change	16.9%	18.0%	13.9%

Table 1. Photodiode voltage outputs for light absorbance at 820 nm through hypoxic forearm muscle tissue induced by 10 minutes of muscle constraint with a rubber band.

Cuvette Hemoglobin Testing

.

٠

- Several controlled tests have been performed using our device on hemoglobin samples via a cuvette. Experimental configuration seen in Figure 3.
- Goal: to better understand device response to concentration and percent Hb oxygenation. Can we accurately predict changes to these variables?
- Concentration and oxygenation was varied
 - More data must be collected to draw any conclusions

Future Plans

- Incorporate microcontroller for signal transm. & power management and implement modeling to convert V readings into useful data in real-time
- Increase resolution with 2 more wavelengths & implementing deconvolution measures
- Improve testing conditions with the help of a darkroom

Acknowledgments

We thank Dr. Katz and his team at Katz Diagnostic for their sponsorship and mentorship throughout the process. We would also like to thank Dr. Golecki and the course staff for their support, as well as everyone involved in our interview process.

References

 Marques et al., "Prevalence of Fibromyalgia."
Lund, Bengtsson, and Thorborg, "Muscle Tissue Oxygen Pressure in Primary Fibromyalgia."
Katz et al., "Intramuscular Pressure Is Almost Three Times Higher in Fibromyalgia Patients."

Design Criteria

Priority	Design Needs	Specific Criteria	Validation	
1	Safe	Device is non-penetrative to prioritize patient comfort . Device has a thermal limit of 37ºC.	Cytotoxicity, Sensitivity and Irritation testing per ISO 10993 IEEE 360 Wearable Dev Standards	
2	Physician Friendly	Device is portable and can be held with a single hand. Output is easily interpretable.	Smaller than 4 x 7 inches Output is in percentage of muscle oxygenation	
3	Cost Effective	Device is affordable and accepted by insurance agencies.	Manufacturing cost less than \$1000	
Priority	Goals	Validation		
1	Accuracy	Device output matches the output of the Moxy muscle monitor		
2	Develop a Validation Test	Hemoglobin model must have a concentration between 12-18 g/dL Animal muscle tissue must have minimum depth of 15 mm		