

Illinois Bituminous Conference December 12, 2018

NATIONAL ASPHALT PAVEMENT ASSOCIATION

WELCOME TO THE 1st International **Conference on Stone** Matrix Asphalt

SMA – A Brief History

- Germany, 1968
 - 50th Anniversary
- United States, early to mid-90s
 - Wisconsin, Virginia, Maryland
- Europe vs. US
 - Europe few changes since inception
 - US DOTs Some changes since inception
 - US Private or P3 Roads Many changes

Why Does it Work?

The Right Ingredients

The Right Proportion

Why Does it Work?

The Right Ingredients

- High quality stone
- Premium asphalt
- Something to prevent draindown
- Filler

The Right Proportion

- Gap graded mixture
 - Stone on stone contact
- Typically polymer modified at higher asphalt contents
- Draindown inhibiter
- Higher filler content

SMA Stone Structure

Stone on Stone Structure

Filled SMA Structure

It's the Same ... But Not Really

What Do These Ingredients/Proportion Provide

- Improved durability
 - Gap-graded agg
- Rutting resistance
 - Stone on stone contact
 - Polymer modification
 - High filler content

A Willingness to Learn

SMA Usage

*NCAT Report 18-03

WisDOT SMA Pilot Program

*Courtesy of Debbie Schwerman

Location of SMA Projects and Control Sections Regions Separated by LA Wear Values

Factors investigated

- Traffic
- Aggregate LA Wear
- Stabilizer type & dosage
- NMAS (5/8" vs. 3/8")
- Base material
- Performance monitoring after 5 years
- Performance measures
 - Pavement Distress Index (PDI)
 - Ride IRI
 - Rutting/Cracking
 - Friction and Noise

WisDOT SMA Pilot Program

*Courtesy of Debbie Schwerman

Detailed Project Information

Project	Base Pavement	ADT/Yr. Const.	Max Agg. Size	Hardness Region	LA Wear
I-43, Waukesha	CRCP	42,200 1992	3/8" (9.5 mm)	3	26
I-43, Walworth	JRCP	11,650 1993	5/8" (16 mm)	3	27
USH 151, Lafayette	AC over thin- edged PCC	6,350 1993	5/8" (16 mm)	3	38
STH 21, Juneau	AC over dense base over PCC	4,200 1994	3/8" (9.5 mm)	2	31
USH 45, Vilas and Oneida	AC	5,940 1993	5/8" (16 mm)	1	21
STH 63, Washburn	AC	5,872 1993	3/8" (9.5 mm)	1	24

WisDOT SMA Pilot Project Construction Issues - Bleeding

*Courtesy of Debbie Schwerman

- Higher temperature sensitivity observed for PMA mixes
 - Draindown above 305°F
 - Sticking in truck box below 290°F
- Projects constructed well before the invention of WMA/compaction aide additives

Performance - Cracking and PDI *Courtesy of Debbie Schwerman

Test Sections (LA Wear	% Cracking			PDI		
Region)	Mean SMA	Mean Control	%Diff.	Mean SMA	Mean Control	%Diff.
STH 63 (Reg 1)	26	69	-63%	24	48	-51%
STH 21 (Reg 2)	72	78	-7%	20	27	-26%
I-43 Wauk. (Reg 3)	48	68	-29%	21	38	-45%
USH 45 (Reg 1)	11	12	-6%	19	13	49%
USH 151 (Reg 2)	52	67	-22%	25	30	-16%
I-43 Wal. (Reg 3)	6	38	-84%	18	47	-62%

- Pavement was surveyed pre-overlay. Cracking extent was used as a baseline to evaluate SMA effectiveness
- PDI = f(Cracking, Flushing, Ravelling, Rutting). PDI > 60 triggers rehab.

Virginia's Experience

Virginia's Experience

Others Nearby

- Missouri uses SMA
 - Contractors can innovate with recycled materials such as RTR and some RAP
- Maryland
 - Secretary Rahn "Why wouldn't you use SMA?"
- Georgia
 - Experimenting with different aggregate properties to still maintain performance

To Fiber or Not to Fiber ...

- WMA additives
- Recycled tire rubber
- Recycled asphalt shingles
- What next???

NAPA/NCAT Study on Performance

Summary – Flexible Pavements

	Performance Measure	Predicted Service Life (Years)		SMA Life
Highway Agency		SMA	Superpave	Extension (Years)
Alabama DOT	Pavement Condition Rating	16.2	16.6	-
Colorado DOT	Rutting Cracking	17.0	17.4	-
Georgia	PACES Rating	16.0*	11.0*	5.0
Maryland SHA (Interstate)	Rutting Cracking Index	24.8	26.9	-
Maryland SHA (Principal Arterial)	Rutting Cracking Index	32.2	24.0	8.2
Minnesota DOT	Ride Quality Index Surface Rating	16.6*	11.3*	5.3
Virginia DOT	Critical Condition Index	19.0	14.4	4.6

Note: * PMS data from a limited number of pavement sections

NAPA/NCAT Study on Performance

Summary – Composite Pavements

		Predicted Se	SMA Life	
Highway Agency	Performance Measure	SMA	Superpave	Extension (Years)
Illinois Tollway	Overall Condition Rating Survey	13.5	9	4.5
Maryland SHA (Principal Arterial)	Rutting Cracking Index	21.8	19.6	2.2
Michigan DOT	Overall Distress Index	22.2	21.3	0.9
Pennsylvania DOT (Interstate)	Overall Pavement Index	21.1*	22.2	-
Pennsylvania DOT (Non-Interstate)	Overall Pavement Index	24.5*	11.0	13.5
Virginia DOT	Critical Condition Index	23.1	12.8	10.3

Note: * PMS data from a limited number of pavement sections

NAPA/NCAT Study on Performance

LCCA Case Study Summary

What's Coming

- A new SMA Best Practices Manual from NAPA
- Updated SMA page on NAPA Website
 - New reports
 - Conference presentations
- Webinar on NAPA/NCAT study Jan 28, 2019

