IDOT HMA Update

59th Annual Bituminous Conference

Jim Trepanier Engineer of HMA, Agg & Chem Tests Illinois Dept. of Transportation

I-FIT

- 2018 & 2019 Round Robins
- Implementation Task Force
- Implementation Plan
- Asphalt Binder Performance Test
- PG Binder Usage
- AASHTO Proficiency Sample Program (PSP)
- Tack Coat
- Intelligent Compaction (IC)

2018 I-FIT Round Robin Approach

Set A – Testing

- Test I-FIT specimens cut from 160mm tall gyratory
- Set B Testing
 - Test I-FIT specimens cut from <u>150mm</u> tall gyratory

Set C – Testing

 Test I-FIT specimens cut from 115mm tall gyratories

Round 1(A) Results

I-FIT Round Robin - 160mm Gyratory Height								
Test Group	Number of Test Sets	Avg. G _f * (J/m ²)	Avg G _f COV (%)	Avg. Slope (kN/mm)	Avg Slope COV (%)	Avg. Fl	Individual Lab FI COV (%)	Population FI COV (%)
IDOT	10	2522.1	8.1	1.0	17.8	25.3	15.7	19.9
Private	17	2422.3	9.4	1.2	15.4	21.5	18.1	26.3
Other States and University	7	2461.3	4.3	1.0	9.2	24.9	10.0	22.1
Testquip Vertical	26	2453.5	8.1	1.2	15.5	22.7	16.8	26.1
Testquip Horizontal	2	2483.2	7.6	1.0	11.8	25.7	12.4	13.3
Instrotek	3	2453.2	5.5	1.0	9.9	25.1	12.5	16.0
IPC	1	2319.1	9.9	1.3	16.0	18.4	19.3	19.3
MTS	1	2351.8	16.8	0.9	27.0	27.3	10.3	10.3
Interlaken	1	2811.7	3.3	1.0	10.8	29.9	5.5	5.5
All Machines	<mark>34</mark>	2459.7	8.0	1.1	14.8	<mark>23.3</mark>	<mark>15.7</mark>	<mark>24.5</mark>

Effect of Gyratory Height

2018 I-FIT Round Robin Findings

- Results showed no consistent trends with gyratory height
- Testquip-Horizontal, MTS, & Interlaken produced consistently higher FI than Testquip-Vertical & Instrotek devices
- Individual lab COV's for FI were less than 16%

2019 I-FIT Round Robin

- Provide final data needed for AASHTO to develop
 Precision Statement for TP-124
 - Needed:
 - 3 mixes total
 - ≥ 30 labs ideal
 - A mix w/ 3 replicates per lab
 - Labs Compact, Cut & Test (115's for Troxlers 160 all others)
 - By January 2019 for consideration at AASHTO Mid-Year Mtg
- 2019 I-FIT RR completed December 7th
- Volumetric & Hamburg currently being tested

I-FIT Implementation Task Force Update

Perpetual Mix Designs

- Current Requirements:
 - New design is good for 3 years before reverification
 - Uses same Agg Bulk Specific Gravities (G_{sb}) for 3 yrs

Perpetual Mix Designs

Perpetual Mix Designs

- New design verified by District Lab
- Mix Design updated annually w/ current G_{sb}'s
- \geq 0.020 change in combined G_{sb} triggers new design
- Change in ledge prior construction season requires 1 point design w/ Hamburg, IFIT & TSR
- Change in ledge during construction:
 - Use plant produced mix for Hamburg, IFIT, TSR.
 - Contractor makes needed adjustment new G_{sb} used for volumetric calculation going forward.

Perpetual Mix Designs

Benefits:

- Increase accuracy of calculated VMA (G_{mb}, AC, Combined G_{sb})
- Reduction in cost & time of doing mix designs & design verifications
- Department focuses on as-produced (PFP, QCP, Hamburg, I-FIT)

PG XX-28 for Overlays in D1 – D6

	Laver	Illinois Neerina	Design ESALs ⁽¹⁾	PG Binder Grade ⁽²⁾⁽³⁾			
Type of HMA				Traffic Loading Rate			
Pavement	,	Number	(million)	Standard ⁽⁴⁾	Slow ¹³⁾ or High ESALs ⁽⁶⁾	Standing ⁽⁷⁾	
11 4 75	Surface [®] and Binder	50	≤ 10	SBS PG 70-22	SBS PG 70-22	SBS PG 70-22	
12-4.75			> 10	SBS PG 76-22	SBS PG 76-22	SBS PG 76-22	
SMA Overlay of PCC or Composite Pavement	Surface and	50	≤ 10	SBS PG 76-22	SBS PG 76-22	SBS PG 76-22	
	Binder	80	> 10	SBS PG 76-22	SBS PG 76-22	SBS PG 76-22	
SMA for Full-Depth Pavement and Overlays of Full-Depth Pavement	Surface and Binder	50	≤ 10	SBS PG 76-28	SBS PG 76-28	SBS PG 76-28	
		80	> 10	SBS PG 76-28	SBS PG 76-28	SBS PG 76-28	
Overlay of PCC or Composite Pavement	Surface or Binder	30	≤ 0.3	PG 58-22	PG 64-22	PG 64-22	
		50	> 0.3 to 3	PG 64-22	SBS PG 70-22	SBS PG 76-22	
		70	> 3 to 10	PG 64-22	SBS PG 70-22	SBS PG 76-22	
		90	> 10	SBS PG 70-22	SBS PG 70-22	SBS PG 76-22	
Districts 1-6 Full-Depth Pavement	Surface and Top Binder	All	All Levels	SBS PG 64-28 ⁽⁹⁾	SBS PG 70-28	SBS PG 76-28	
and Overlays of Full- Depth Pavement	Lower Binder	All	All Levels	PG 64-22	PG 64-22	PG 64-22	
Districts 7-9 Full-Depth Pavement	Surface and Top Binder	All	All Levels	PG 64-22 ⁽⁹⁾	SBS PG 70-22	SBS PG 76-22	
and Overlays of Full- Depth Pavement	Lower Binder	All	All Levels	PG 64-22	PG 64-22	PG 64-22	

ABR Limits

FRAP/RAS Maximum Asphalt Binder Replacement (ABR) Percentage

HMA Mixtures	FRAP/RAS Maximum ABR %								
Ndesign	Binder/Leve	eli <u>ng Binder</u>	Sur	fa <u>ce</u>	Polymer Modified				
	w/o I-FIT	with I-FIT	w/o I-FIT	with I-FIT	w/o I-FIT	with I-FIT			
30	50	55	40	45	10	15			
50	40	45	35	40	10	15			
70	40	45	30	35	10	15			
90	40	45	30	35	10	15			
SMA					20	25			
IL-4.75					30	35			

Increase FI Thresholds for:

SMA

IL-4.75 for use as crack retarding binders

Explore FI Moving Average Concept

- Add a Production Testing Frequency
- Moving Average \geq 8.0
- Establish Control Limits for Individual
- Would prevent Shutdown on failing Individual
- Need to wait until 2021 to determine District Testing Capability

I-FIT Implementation

2019: I-FIT on all Interstates

- Additional projects as approved by Central Office
- Spec include 5% higher ABR for I-FIT projects
- 2020: I-FIT on all HMA projects
 - LTA protocol on all surface mixes
 - Perpetual Mix Design & New FI Thresholds for SMA & Crack Retarding IL-4.75 binders
 - Begin allowing Modified Asphalt Binders

Asphalt Binder Performance Test

ICT R27-196HS

Rheology/Chemical Based Procedure to Evaluate Additives/Modifiers used in Asphalt Binders for Performance Enhancements (Phase 2)

Research Objective

Develop advanced screening protocol w/ longterm aging & rheological/chemical characterization methods for modified binders.

- Evaluate the effect of modifiers on binder chemistry & performance
- Develop an efficient long term aging procedure for modified binders
- Validate & fine-tune preliminary thresholds

Identify and Collect Modifiers

- Working w/ Industry to identify & collect Modifiers & Additives available in IL
 - Up to 10 Modifiers/Additives Considered
 - Samples of Modifiers & Additives will be Characterized
- Asphalt Binders to be Collected & Tested
 - 64-22's (Base Binders), 58-28, 52-34, 46-34
- Formulas, Mix Ratios & Blending Requirements Provided by Suppliers

Field Core Selection

- Objective of collecting cores is to determine impact of long-term binder aging & set baseline for developing LTA protocol
- Cores should represent typical surface mixtures used in the region
 - Avoid mixtures with RAP > 20% & RAS
 - Avoid poor performers
- Working w/ Tollway & Districts to identify field core locations & send cores & construction history to ICT

PG Binder Usage

2010 to 2017 Grade Usage

■2010 ■2011 ■2012 ■2013 ■2014 ■2015 **■**2016 **■**2017

Bituminous Price Index

Percent Polymer Used vs. Time

AASHTO Proficiency Sample Program (PSP)

Disputing Individual Test Results

- PFP Spec Rev. to allow Method 2 Dispute Resolution Provided:
 - Contractor Lab participates in AASHTO PSP & Scores Rating ≥ 3
 - Adjusted Split Sample exceed Precision Limits
- Requires all District QA Labs also participate in AASHTO PSP

AASHTO re:source Proficiency Sample Program (PSP)

Intent:

- Allow Contractors to dispute individual parameters in PFP
- Compare individual labs results with large pool of results
- Verify testing apparatus and operator under actual testing conditions
- Opportunity to identify and correct problems
- Allow Illinois to align results w/ the rest of the Country
- AASHTO provides results rating sheet
 - Good Rating = 3, 4, or 5, Low Rating = 2 or less

PSP Observations:

- All private & State labs received good scores on Gyratory Bulk Gravities (G_{mb})
- Some labs on both sides had some issues w/ Max Gravities (G_{mm}) that warraned investigation, corrective action & retesting
- Illinois as a whole was light on the Gyratory Bulk Gravities (G_{mb})

Hot-Applied Tack Coats w/ Wax

New Tack Coat Products

- 6 New Tack Product to Expedite Paving were evaluated through ICT Research
 - 4 Hot Applied Asphalt Binders w/ wax
 - 2 Quick Set Emulsions
- Evaluate Bond Strength of New Products
 - Bond Strength ≥ SS-1h
 - Lab Shear Test using ATREL Device Lab Specimens
- Products were found perform comparable to SS-1h

Hot-Applied Asphalt Tack Coat w/ Wax

- Work with Industry to develop a material specification
- Chemical Test Unit will evaluate and characterize the materials
- Develop an Experimental Feature Workplan
- Solicit Districts for projects in 2019

Intelligent Compaction

Field Project

- Veteran's Parkway in Bloomington, IL
- Lessons Learned
 - Need IC Temperature and Location Verification each day of paving
 - Need new Manual of Test Procedures IC Document
 - Need Equipment Accuracy Table in QCP Special Provision
 - Need to Update Minimum Untrimmed Percent Coverage

Questions

Jim Trepanier

(217) 782-9607 Work (217) 622-4790 Mobile James.Trepanier@illinois.gov

Illinois Dept of, Transportation