

Development of Long-Term Aging Protocol for Implementation of I-FIT (ICT R27-175)

59th Annual Illinois Bituminous Paving Conference December 12, 2018

PI: Imad L. Al-Qadi PhD, PE, Dist.M.ASCE

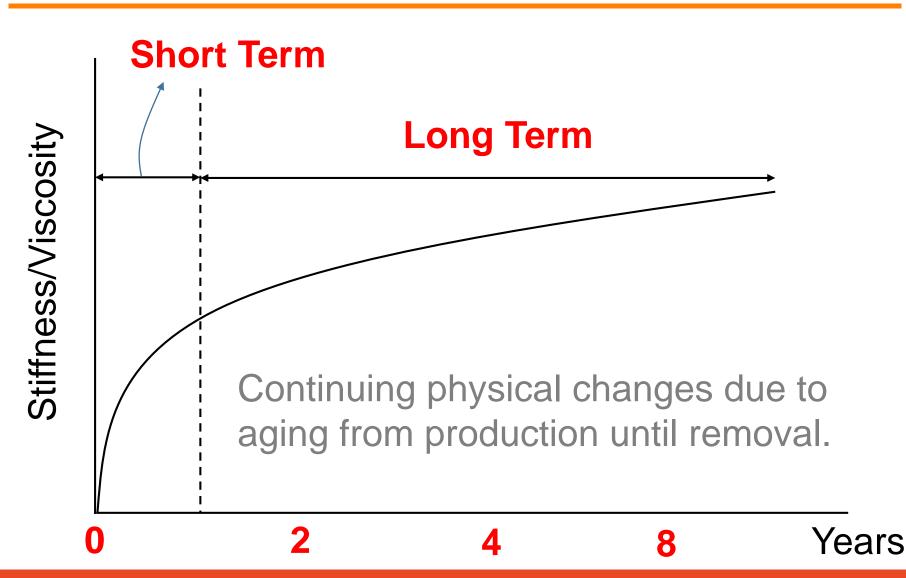
Co-PI: Hasan Ozer

Today's Agenda

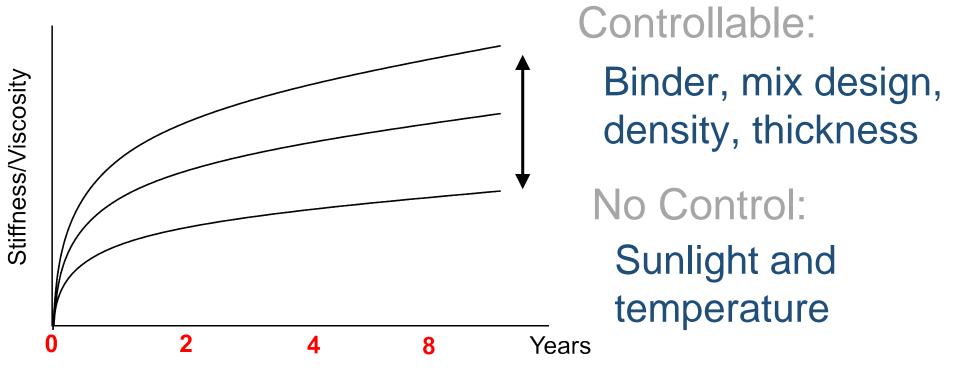
Today's Agenda

Why Study Aging?

Every asphalt pavement experience aging and aging is often one of the causes of surface distresses.



Phases of Aging



"Where Excellence and Transportation Meet"

Engineering Aging Performance

Aging performance of pavements can vary.

Engineering goal is to use materials with least/acceptable susceptibility to aging for a given location!

Simulation of Aging in the Lab

- A practical and reasonably simulative longterm aging method is needed for:
 - Mix design improvements based on performance testing (e.g. I-FIT)
 - Acceptance
- We have long-term aging methods for binder but modifications are underway!
- □ No consensus procedure on mixture aging
- Hot research area is on how to accelerate aging in the lab!
 - Duration, temperature, and equipment

Current Standard for Mix Aging

□ AASHTO R30

- Equipment: Force-draft oven
- Temperature: 85°C
- Duration: 5 days
- Gyratory compacted pill

□ Shortcomings

- Difference in aging inside out
- Specimen distortion
- Not clearly known what it simulates
- Too long Impractical

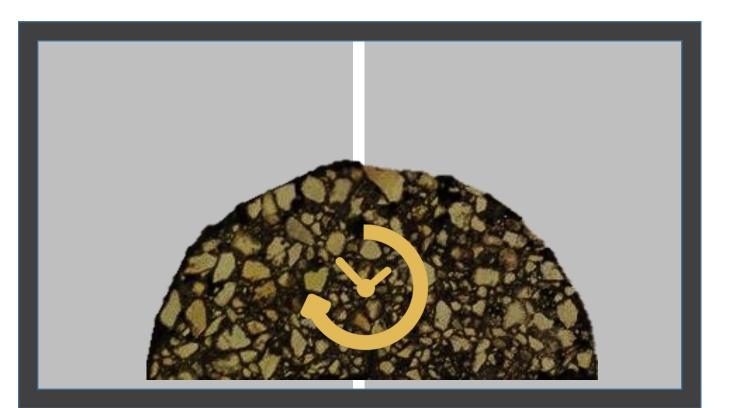
][

NCHRP 9-54^{*}: Long-Term Aging Protocols of Asphalt Mixtures

- A calibrated and validated aging procedure for performance testing and prediction
- Force-draft oven
- □ Aging loose mix

<u>*Kim, R. et al. (2018)</u>

□ Temperature is 95°C


Suggested Duration for Central Illinois:

Depth from Surface	4 years	8 years	16 years
6 mm	3 days	7 days	14 days
20 mm	2 days	3 days	6 days

R27-175: Research Objective

Develop a long-term aging protocol specific to IL conditions and determine FI thresholds

"Where Excellence and Transportation Meet"

Anticipated Outcome

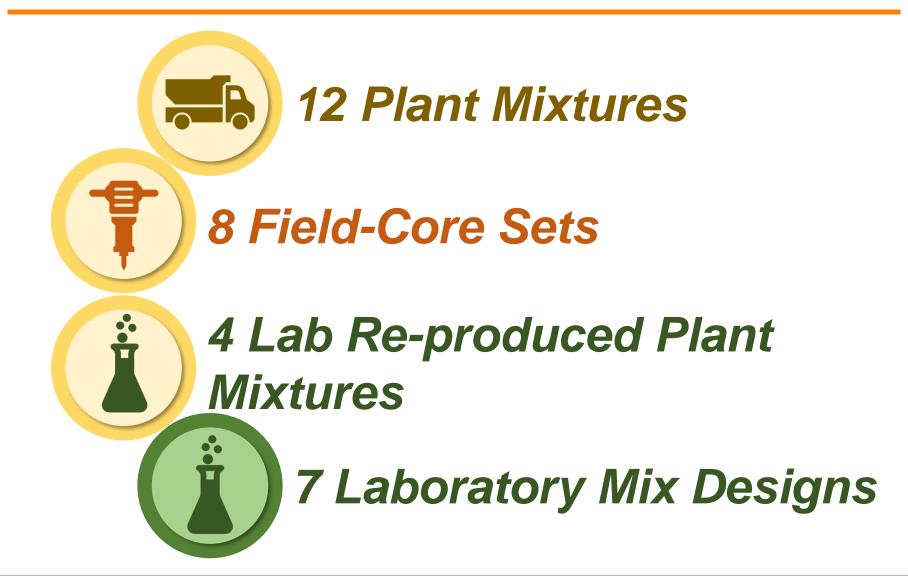
We aimed at a balanced aging protocol:

Compatible with I-FIT

Reliable & Reproducible

Correlates to Field Reasonably

Cost Effective



Practical and Easy to Implement

Scope of Research

Aging Method Development

Force Draft Oven Aging

Loose Mix

Compacted Specimen

Loose Mix vs. Compacted Specimen

Loose Mix

Pros:

- No aging gradient
- **Specimen integrity**
- Faster aging

Cons:

- High operation variability
- Controlling air voids

Compacted Specimen

Pros:

- Sample preparation is quick (practical)
- Limited operation • variability

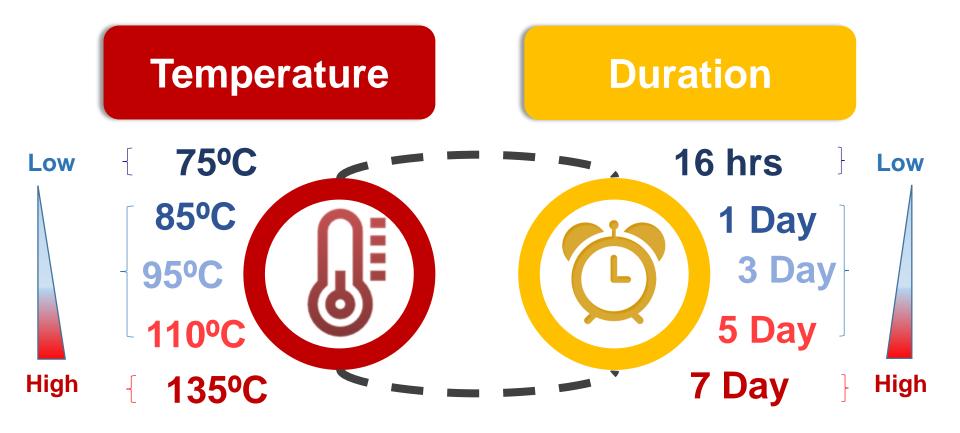
Cons:

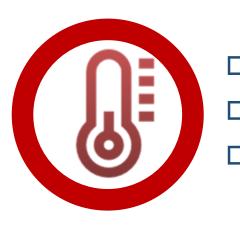
- Specimen integrity
- **Differential aging**

Ι

Balancing Temperature and Duration

Duration


Temperature

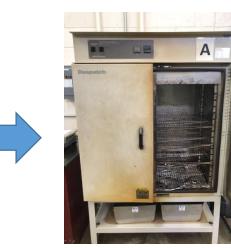


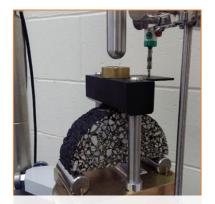
Temperature and Duration Selection

Constraints for Temperature & Time

Avoid >100°C - Avoid < 80°C - 05°C & 85°C □ 95°C & 85°C were considered

- 5-Day according to AASHTO **R30**
- Consider option for shorter durations (1 to 3-Day)

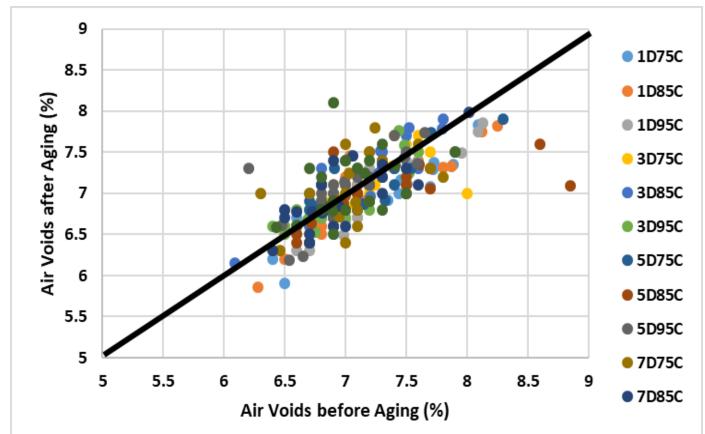



Aging Procedure

Prepare I-FIT specimens

Richold Richol

85 and 95°C


Testing to find FI

Aging in force draft oven

Checking Specimen Integrity

Air voids remained unchanged up to 5 and 7 days of aging.

"Where Excellence and Transportation Meet"

Checking Specimen Integrity

Specimen dimensions are not affected significantly.

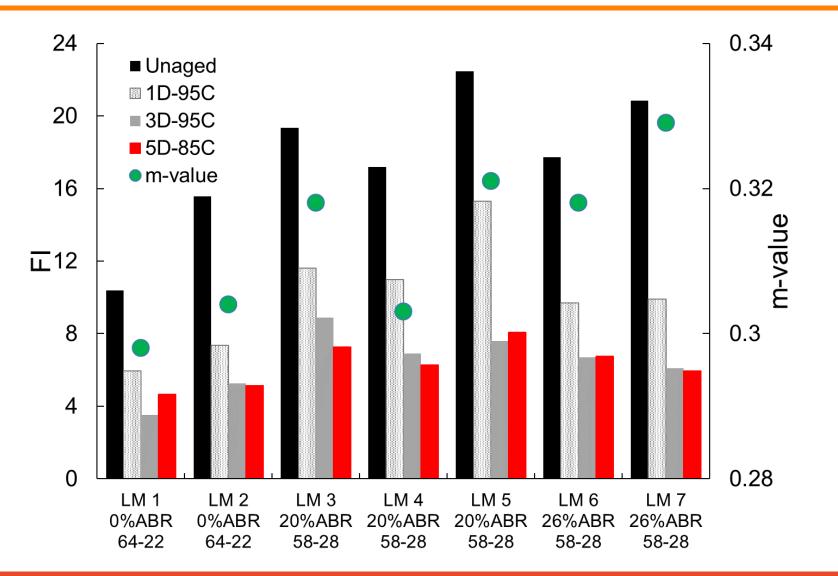
Plant Mix Designs

Plant Mixtures 12 Mixes							
Mix ID	N-Design	NMAS (mm)	VMA (%)	AC (%)	Binder PG	ABR (%)	Mix Type
PM1	70	9.5	15.2	5.9	64-22	20.7	DG
PM2	90	9.5	15.1	6.2	70-22	9.2	DG
PM3	90	9.5	15.2	6.2	70-22	9.6	DG
PM5	70	9.5	15.5	6.1	58-28	20.3	DG
PM6	70	9.5	15.7	6.2	64-28	7.9	DG
PM7	80	9.5	16.4	6.4	70-28	30.2	SMA
PM8	50	9.5	15.0	6.0	70-22	15.8	DG
PM9	70	9.5	15.0	5.7	76-28	10.2	DG
PM10	50	9.5	15.2	6.0	76-22	10.2	DG
PM11	50	9.5	15.4	6.0	58-28	24.5	DG
PM12	70	9.5	15.0	6.0	70-28	30.0	DG
PM13	80	12.5	17.3	6.3	70-28	26.7	SMA

Lab Mix Designs

Mix ID	N-Design	NMAS (mm)	VMA (%)	AC (%)	Binder PG	ABR (%)	Mix Type
LM1	70	9.5	15.2	6.4	64-22	0	DG
LM2	70	9.5	15.2	6.4	64-22	0	DG
LM3	70	9.5	15.2	6.4	58-28	20.0	DG
LM4	70	9.5	15.2	6.4	58-28	20.0	DG
LM5	70	9.5	15.2	6.4	58-28	20.0	DG
LM6	70	9.5	15.2	6.4	58-28	26.0	DG
LM7	70	9.5	15.2	6.4	58-28 (ReOB)	26.0	DG

Parameters Considered


- Parameters predicting long-term aging performance:
 - Flexibility Index (FI) at the desired laboratory age
 - Aging Rate to indicate reduction of FI from an unaged condition;

$$Aging Rate = \frac{FI_{Unaged} - FI_{Aged}}{FI_{Unaged}} \%$$

Effect of Aging on Fl

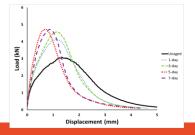
Signals from the Aging Rate

Aging rate provides supporting data to evaluate aging performance of a mix

Mix ID	FI Unaged	FI @ 1D/95C	% Reduction @ 1D/95C	FI @ 3D/95C
PM1	4.1	1.1	74%	0.1
PM2	16.3	6.8	58%	3.2
PM3	12.8	8.1	37%	3.5

Low FI AND Rapid Drop High FI BUT Rapid Drop High FI AND Slow Drop

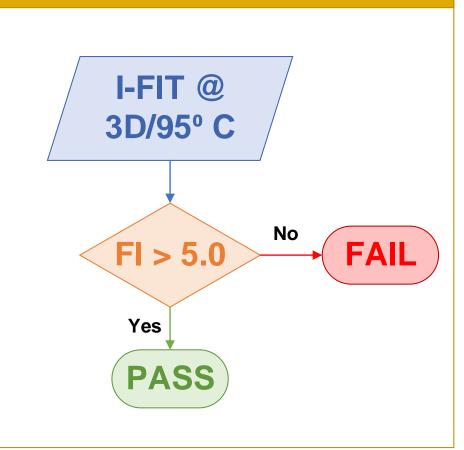
Today's Agenda



IL Long-Term Aging Protocol

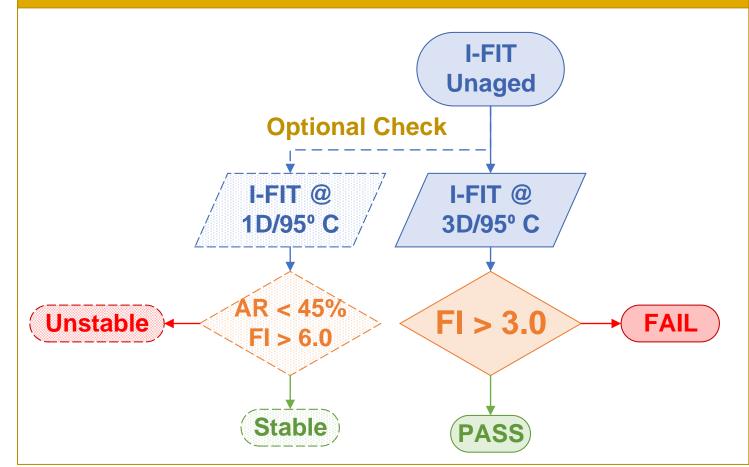
Lab Produced Lab Compacted

Plant Produced Lab Compacted


- 1. Age specimens 1-D or 3-D at 95°C
- 2. I-FIT to calculate FI and aging rate
- 3. Compare against thresholds
- 4. Pass or fail decision on the mix

Protocol for Lab Mixes

Suggested Long-Term Aging Protocol Laboratory Designed AC Mixtures



Protocol for Plant Mixes

Suggested Long-Term Aging Protocol Plant-Produced AC Mixtures

"Where Excellence and Transportation Meet"

Project Findings

 \square 3D-95°C is an acceptable aging temperature in a forced draft oven No need to wait for 5 days (AASHTO) 1D-95°C may be used to screen mixes for rapid FI changes during plant production Binder source and m-value has some measurable effect on aging performance □ Aging protocol can produce repeatable performance test results

Acknowledgement

 Graduate students: Zehui Zhu, Punit Singhvi, Mohammed Sawalha
ICT research engineers (Greg Renshaw and Michael Johnson),
IDOT TRP

Thank You Any Questions?

Illinois Center for Transportation

Illinois Center for Transportation (ICT)

Illinois Center for Transportation

(217) 300 - 2373