
11
Moses Turner Open First

Working on Monado’s 
Hand Tracking



2Open First 2

Moses Turner
● Freedesktop
● GitHub
● Blog
● @mosesturnervevo
● moses@collabora.com

https://gitlab.freedesktop.org/slitcch/
http://github.com/slitcch/
http://slitcch.github.io
https://twitter.com/mosesturnervevo
mailto:moses@collabora.com


3Open First 3

● Transhumanism
● Radical life extension
● Life as a virtual being
● XR, VR & AR
● Machine learning, AI and 

computer vision!
● Math!
● FOSS!
● Joining Collabora!

Talk to me about



4

● Motivation, prior art
● Current status
● What’s next?
● Wrapping up



5

Why optical hand tracking?
● 6DOF controllers are ideal for games and art, but I’m helping build the 

next general-purpose computing platform.
● Can’t use controllers at the same time as a keyboard
● Markerless - no extra equipment besides HMD
● You can’t forget your hands in a hotel
● More robust to unfavorable conditions than constellation tracking
● One input schema which we can emulate in different ways
● Largely proven out, see Mediapipe, Oculus Quest, Ultraleap, HTC
● Feels like your hands! Can be a lot more transformative than controllers.



6

Notable prior tracking pipelines
● Ultraleap

○ Works extremely well, but is closed-source and has scary licensing. No-go for research purposes.
○ Requires an extra sensor that cannot be used for anything else

● MEgaTrack - Facebook
○ Our tracking is partly a replication of this. Works very well; hats off to the researchers behind this.
○ Unofficial reimplementation of their model architectures
○ Dataset is private

● GANHands - Max Planck Institut Informatik
○ Possibly SoTA for realtime egocentric RGB? I haven’t kept up. Probably suitable for XR too.
○ Paper is not detailed enough, not enough of the code is published, and the dataset is not useful on its 

own. 
○ Research institutions can request some version of the pipeline, just not me! Worth investigating!

● Mediapipe - Google
○ Anecdotal evidence that it’s not good for egocentric tracking: [1] [2]
○ Questionable feature engineering; doesn’t use gaussian priors
○ Dataset is private

http://www.ultraleap.com
https://central.leapmotion.com/agreements/SdkAgreement
https://research.facebook.com/publications/megatrack-monochrome-egocentric-articulated-hand-tracking-for-virtual-reality/
https://github.com/milkcat0904/MegaTrack-pytorch
https://handtracker.mpi-inf.mpg.de/projects/GANeratedHands/
https://mediapipe.dev/
https://www.collabora.com/news-and-blog/blog/2022/05/31/monado-hand-tracking-hand-waving-our-way-towards-a-first-attempt/
https://kros.dev/2021/09/15/leap-motion-vs-mediapipe/


7

Notable prior datasets and dataset generators

● Too much to list here. Only listing things I have some personal experience with.
● FreiHand - only 2D keypoints, no sequential data, annotations are not super accurate
● CMU Panoptic Dataset - ditto
● InterHand2.6M

○ + Very accurate 3D keypoints, sequential, includes camera calibrations, has lots of overlapping hands
○ - Cumbersomely big; has some rare but very wrong annotations that are painful to filter out.

● GANerated Hands Dataset
○ + Artificial dataset with trivially perfect annotations
○ - Only 2D keypoints, no sequential data, really weird cropping, no overlapping hands
○ --- Dataset generator and models are unpublished; you can’t fix any of these problems. Please contact 

me if this changes!
● Everything from Max Planck Institut Informatik that tends to have licensing/publishing issues: I also wanted 

to use HandTextureModel and MANO but couldn’t
● Rendered Handpose Dataset might be very good, gets cited a lot, haven’t looked deeply into it.
● Epic Games’ MetaHumans or Mixamo would be super good for generating an artificial dataset, but they have 

an explicit clause in their license barring you from doing AI research with it.

https://github.com/lmb-freiburg/freihand
http://domedb.perception.cs.cmu.edu/handdb.html
https://mks0601.github.io/InterHand2.6M/
https://handtracker.mpi-inf.mpg.de/projects/GANeratedHands/GANeratedDataset.htm
https://handtracker.mpi-inf.mpg.de/projects/HandTextureModel/
https://mano.is.tue.mpg.de/
https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html
https://www.unrealengine.com/en-US/metahuman
https://www.mixamo.com/


8

Our motivation
● Some good open-source datasets/pipelines, but licensing is tricky if you aren’t a 

non-commercial research institution. Can be difficult to get commercial licenses.
● No good, tweakable artificial dataset generator with CC-BY or better licenses
● Lots of unexplored research areas due to a lack of foundational research that’s fully 

open and easy-to-use
● It sucks to be doing commercial R&D in this space. Huge companies can 

sometimes do this profitably by vertically integrating, but it’s risky.
● We want to help make it possible to try new things on a budget, using our software 

as a base to start from.
● Push the SoTA forward while also lowering the barrier to entry.



9

Explicit goals at 30,000 feet

● Publish a completely FOSS optical hand-tracking software that competes with or 
exceeds SoTA, runs in realtime, and has a C api. ✅

● Publish all real datasets we’ve collected, with open licenses that allow anybody to 
use and contribute to them. 🔜

● Publish all of the data and code used to generate our synthetic dataset, with the 
same set of licenses and contribution pathways. 🔜

● Keep improving what we’ve got, and make it easy for other people (individuals, 
research institutions, companies; literally anybody) to help! ✅

● Contract work for people who want a specific R&D area explored, or for people who 
want tight integration with a product they’re shipping. 🔜



10

● Why do we care so much about 
optical hand tracking?

● Current status
● What’s next?
● Wrapping up



11

(Prerecorded video just in case)

Boom!
(About a week ago)
Same optimizer; better 
keypoint estimator trained 
with artificial data! Jitter 
is mostly gone now.

http://www.youtube.com/watch?v=e2DrGiw3N6k


12Open First 12



13

Mercury’s hand detector + classfier
● Sees in grayscale, 320x240.
● SimDR model architecture (Deviation from MEgATrack: Their model architecture is 

much more efficient, and it’s on my backlog to train a new one.)
● Outputs heatmaps for hand centers and radii
● Datasets:

○ EPIC-KITCHENS
○ EgoHands
○ TV-Hand and COCO-Hand
○ An in-house dataset collected with a North Star and annotated 

semi-automatically
● Training data pipeline uses a bunch of PyTorch Datasets and a ConcatDataset

https://github.com/xuewengeophysics/SimDR
https://github.com/epic-kitchens
http://vision.soic.indiana.edu/projects/egohands/
https://github.com/SupreethN/Hand-CNN


14

Training the hand detector

TrainingAnnotation Inference

http://www.youtube.com/watch?v=LkVWHzhujWw
http://www.youtube.com/watch?v=YnC857-KkKY


15



16

Mercury’s hand keypoint estimator
● Trained a custom hand keypoint estimator
● Sees in grayscale, 128x128. (Deviation from MEgATrack: MEgATrack sees in 96x96)
● Outputs are 

○ 21 2D heatmaps predicting the most likely keypoint position in pixel coords
○ 21 1D heatmaps predicting the most likely keypoint depth relative to the 

middle-proximal joint
● Same model architecture as Quest hand tracking
● Datasets:

○ Small greenscreen dataset I collected and annotated using Mediapipe
○ CMU panoptic dataset
○ FreiHand
○ Artificial dataset I generated (talk about this later!)

https://github.com/milkcat0904/MegaTrack-pytorch
https://github.com/lmb-freiburg/freihand


17



18

● Many don’t have strictly sequential annotations: instead, you get a bunch of unrelated individual images. 
(Notably, InterHand2.6M does this exactly right)

● You need to calibrate your cameras and store joint locations in 3D relative to the hand! Pretty much all 
datasets just annotate in 2D image-space, making them unhelpful for more complicated model 
architectures. (Notably, InterHand2.6M does this exactly right)

● Basically all real-world datasets have some percentage of incorrect annotations that are hard to filter out. 
(InterHand was the worst here, so bad that I decided to give up on using it. Last I checked was April 2022; it 
may have been fixed since then.)

● Privacy and liability issues. You might be screwed if even one image has unwanted PII.
● Feels like almost every dataset has a non-commercial license; you can’t ship a commercial product out of 

what we have now because of dataset licenses
● If you collect a new real-world dataset, you have to worry about the above and:

○ Am I going to accidentally lose data?
○ How long will it take my annotators to annotate everything? How often are they making mistakes?
○ Am I using the right type of cameras for my application?
○ Panoptic studios are expensive

Review: Problems with existing public hand landmark datasets



19

Solution: Synthetic data!



20

What I showed you before was 
trained on a lot of synthetic data 
and a little bit of real data, but 
we can also track hands using 
_only_ synthetic data! 
The quality isn’t quite as good 
yet, but it’s totally a fixable data 
problem: we need to add more 
diverse poses, clothing, rings, 
etc. to the dataset generator.

Solution: Synthetic data!

http://www.youtube.com/watch?v=uSXIw27iY9M


21

● ML mesh generation isn’t quite good enough yet, so we’re using “classical” techniques.
● Started with some very high-quality hand scans from an asset store

○ Having a small licensing issue here - we will publish existing scans or create new ones 
hopefully by Q1 2023

● Rigged them in Blender
● Wrote a C++ pipeline that

○ Generates pose data by permuting a wrist-pose dataset I collected using Lighthouse 
tracking with a finger-pose dataset I collected with our hand tracking under good lighting 
conditions

○ Runs blender with a custom Python script controlled by environment variables. Blender 
sets up lighting, HDR background, animates the hand and renders a bunch of cubemaps

○ Takes the cubemaps and a random camera calibration, and distorts them into final 
images that look like they were captured on a HMD’s onboard camera

○ Writes out the finger poses as 3D coordinates relative to the left camera
○ Is published here (code quality has room for improvement)

Solution: Synthetic data!

https://gitlab.freedesktop.org/monado/utilities/hand-tracking-playground/image-distorter


22

● Basically same idea as the hand detector. Many PyTorch 
Datasets, rolled into a ConcatDataset

● NoneChucks is really nice for when you’ve found some 
mistakes in the dataset you spent 30 hours generating

● Fancy loss function that only looks at model’s depth 
prediction if we have ground truth depth

● Training code is published here (code quality has room 
for improvement) 

Training the keypoint estimator

https://github.com/msamogh/nonechucks
https://gitlab.freedesktop.org/monado/utilities/hand-tracking-playground/keypoint-estimator


23

Mercury’s realtime nonlinear optimization!

● We start with predictions of the keypoint locations in camera space, and want to end up with 6dof poses for each joint. 
You can very painfully and inaccurately do this by hand using camera triangulation and Inverse Kinematics, but it’s 
way, way easier to…

● Write a function that takes a low-dimensional vector encoding hand pose (hand size, 6dof wrist pose, joint curl 
values), evaluates this to 6dof joint poses, and outputs a metric for “How close are these poses to the model 
predictions?”
━ Then, ✨ask your computer✨ to evaluate this function many times, working towards a good solution. This is 

easily accomplished using gradient descent - you could easily implement this in PyTorch, for example. 
Levenberg-Marquardt is typically faster, and it’s really just a mashup of gradient descent and Gauss-Newton.

● The exact same technique is used to solve for
━ HMD/controller pose for lighthouse tracking (Vive/Index)
━ HMD/Controller pose for constellation tracking (Oculus/WMR)
━ Head pose for SLAM (Basically everyone)

● Very simple to add extra terms to system: temporal consistency, extra sensors, myoelectric tracking, wrist-mounted 
IMU, etc.

● Works for underconstrained, exactly-constrained and over-constrained systems.
● More flexible than, and often more efficient than Kalman filters. Typically does the same thing given Gaussian priors.
● We’re using tinyceres, our fork of Ceres. Ceres and Ceres’s docs are extremely good, huge shout out to them!

https://gitlab.freedesktop.org/monado/utilities/hand-tracking-playground/tinyceres
http://ceres-solver.org/


24

Nonlinear optimization is awesome!

http://www.youtube.com/watch?v=SK4XXQe6jaY
http://www.youtube.com/watch?v=Jd2uC8_1k80
http://www.youtube.com/watch?v=WhBC6HaWLMQ
http://www.youtube.com/watch?v=qJLhisyZohM


25

Ceres is awesome!

http://www.youtube.com/watch?v=SK4XXQe6jaY
http://www.youtube.com/watch?v=Jd2uC8_1k80
http://www.youtube.com/watch?v=WhBC6HaWLMQ
http://www.youtube.com/watch?v=qJLhisyZohM


26

● Why do we care so much about 
optical hand tracking?

● Current status
● What’s next?
● Wrapping up



27

What’s next?
● Improving our artificial data to the point where real data has no marginal value

○ Long sleeves, rings, watches, tattoos
○ Better pose remapping from mocap datasets to the specific model
○ Soft-body flesh/tendons/skin simulation? (Do I know anybody who knows anything here? Code-first approach pls)
○ More mocap data
○ Random walks over plausible hand pose space
○ Intertwining fingers
○ Try simulating depth cameras and event cameras

● Train very slow but very accurate models to explore the limit of how accurate optical egocentric hand tracking can get
○ Diffusion in pose-space?

● Fix issues in NLO; try to use gaussian priors everywhere.
● Try a bunch of ideas for improving accuracy in our real-time models

○ Train a keypoint estimator that sees in stereo?
○ “Refinement” model that fixes up the region of interest, so that we can track quick movements with less jitter?
○ Lots of stuff to try here. “idk try it i guess” is by far the most effective way to do novel computer vision research.
○ Create better techniques to assess accuracy/performance

● Elbow tracking!
● Non-egocentric tracking, models that see in RGB
● Publish every last bit of our dataset, dataset generation and tracking code.



28

Crazier ideas, if you’re bored
● Modular non-linear optimizer that takes all tracking data (egocentric hand tracking, external optical hand tracking, SLAM, EMG 

sensors, etc) and optimizes for the full upper body pose (or more) with gaussian priors and physics priors.
● Neural full-body-pose prediction. Take semantic data describing the past ~30 seconds of tracking data (head, left hand, right 

hand, etc.) and predict where they’ll be for anywhere between 0-1000ms from now
● Reinforcement learning agent that tries to beat Levenberg-Marquardt for real-time speed

○ Nonlinear optimization is amazing, and here we’re trying to nonlinearly optimize a nonlinear optimizer to make it really 
efficient for a known problem. Make sense?

○ Should handily beat LM if you fine-tune it on real tracking data - should be able to learn about the shape of the global 
manifold as well as know how to operate on the local manifold. Also means you (probably?) don’t have to do a search for 
the best LM starting parameters

○ Yay, now you can safely anthropomorphize your XR tracking pipeline!
● More research into event cameras!!!



29

We are hiring!

https://www.collabora.com/careers.html


30

Questions?



31

Thank you!


