Annual Review: Multi-Layer Cyber-Physical Supply Chain Risk Analysis for Improving the Resilience of IoT-Enabled Critical Infrastructures

Junaid Farooq
University of Michigan
Dearborn, MI

Dec. 06, 2022
Arlington, VA
The Problem

- IoT / ICT systems comprise of an **interconnection** of multiple hardware and software components.
- Multiple entry points for vendor involvement in system safety and reliability.

- **DHS Component**: CISA NRMC
- **Challenge Area**: ICT Supply Chain Risk Management (SCRM)
The Problem

Challenge:
- Supply chain risk is non-linear
- Overall risk from the supply chain is convoluted
- Difficult to identify vendors that are most critical

Our Approach:
- Analyze systemic risk as opposed to vendor risk
- Consider a composition of the component network and supplier network
- Decision support for vendor selection, onboarding, and upgradation

Figure: Supply chain ecosystem for autonomous vehicles.
What Will Success Look Like?

IoT Supply Chain Risk Analysis & Mitigation (iSCRAM) software tool can:

- Ingest a schematic of components, system interconnects, and vendors
- Assess vendors based on cybersecurity standards
- Provide a holistic understanding of system risk from the supply chain

Integrated Risk Assessment

Identify critical vendors and components

Risk Optimized Vendor Selection
What Will Success Look Like?

• Easy to use *software tool* that can be used by end users to make supply chain risk assessments

• Beta testing and commercial launch of the tool

• Metrics for Success:
 • Number of use cases / application scenarios
 • Testing and validation on actual customer data
 • Number of initial adopters
Benefits

- Analyze Systemic Risk Posture
 - Compute Systemic Risk Score and Rank Vendors / Components

- Prioritize Security Resources
 - Recommendations for Improvement of Vendor Risk

- Enhanced Visibility of Supply Chain Risk
 - Identify Vulnerabilities and track down risk sources
Benefits

Potential End-Users:

- **Mass Transit**: Ensuring that organizations such as MTA are aware of the risk by using equipment from third party vendors

- **Automotive Sector**: Understanding the risk in autonomous vehicles from supply chain actors

- **Cyber Insurance**: Decide insurance premiums and scrutinize vendors based on cyber risk of the supply chain

Source: Adapted from the paper J. Goikoetxea, “Shift2Rail CONNECTA: The Next Generation of the Train Control and Monitoring System”, in Proceedings of 7th Transport Research Arena TRA 2018, April 16-19, 2018, Vienna, Austria

Figure: Components and vendors involved in a rail car of the mass transit system.
Accomplishments (Technical)

• Development of iSCRAM Backend and Frontend software

• Web Deployment and Access Management

• Publication and Dissemination
 • 3 research articles and 1 book

• Hands–on tutorial at IEEE MILCOM 2022
Product

- **System Schematic**
- **Ranking of Vendors**
- **System Risk Ratings**
- **Ranking of Components**

Available: www.i-scram.com
Product

Main Dashboard

Risk Summary and Statistics

* Proprietary Copyright Software

Available: www.i-scram.com

Risk-Centric Vendor Selection

Vendor Selection
Accomplishments (Commercial)

• Approx. 20 end-user interviews, 3 NDA signed

• Selected for DHS sponsored commercialization assessment through RTI Innovation Advisors

• Awarded MTRAC Advanced Transportation grant at University of Michigan funded by Michigan Economic Development Corporation

• Contacts Initiated with BlockHarbor Cybersecurity, Lear Corp., and Resilience Insurance
Activities Remaining

• Beta Testing Partnership
 • NDAs have been signed
 • Testing and validation

• Licensing / Incorporation

• Sustainability: SBIR / STTR / Venture Capital
Thank You!

Contact: mjfarooq@umich.edu

Follow Us: www.i-scram.com