CARE PHYS 213 Review Session

Welcome and please sign in to the queue!
Welcome to the Center for Academic Resources in Engineering (CARE) PHYS 213 Exam 1 Review Session!

Tutors are available to answer questions, review problems, and help you feel prepared for your final during these times:

Sun, 4/3 2:00-4:00pm in 4035 CIF (Jay, Karan, Jonah)

Good luck!
Topic breakdown for the Exam

Unit 1: Equilibrium, Entropy, and Energy
Unit 2: Heat and Temperature
Unit 3: Ideal Gases
Unit 4: Equipartition and Molar Heat Capacity
Unit 1: Equilibrium, Entropy, Energy

- **Microstate vs. Macrostate**
 - Microstate: individual arrangement
 - Macrostate: properties that arise from the microstate
 - Many microstates can lead to same macrostate
 - Two people have same weight (macrostate), but the distribution of fat can be different (microstate)

- **Entropy**
 - The degree of disorder or randomness in the system
 - $S = k \ln(w)$ where w is the number of microstates

- **Equilibrium**
 - Occurs when the macrostate of the system ceases to change.
 - Change in total S is greater than or equal to 0
 - In other words, equilibrium is achieved when S, entropy, is maximized

- **Energy**
 - Always conserved
 - Must be transferred to a body in order to perform work or increase its temperature.
Unit 2: Heat and Temperature

- First law of thermodynamics:
 \[\Delta U = Q - W \]

- Temperature:
 - Lower temperature = greater slope, more increase in entropy when increasing internal energy
 - Heat capacity (C) - the number of heat units needed to raise the temperature of a body by one degree
 - Specific heat capacity (lowercase c) - heat capacity per unit mass

 \[Q = C \Delta T = m c \Delta T \]

- Where \(m \) is the mass of the object supplying or absorbing heat and \(\Delta T \) is the change in temperature of that object
Unit 3: Ideal gas and Equipartition

- Ideal Gas: Approximation of particles as points with no interactions:
 - Follows ideal gas law:
 \[PV = nRT \]
 - Also \(pV = NkT \)

- Equipartition: each degree of freedom contributes \(\frac{1}{2} kT \) of energy
 - As you increase temperature, different parts of motion for particles are excited
Unit 4: Equipartition and Molar Heat Capacity

- Molar Heat Capacity: For an input of heat, how much does the temperature change?
 - \(C = \frac{dU}{dT} \)
- Because of equipartition, for certain particles, the higher the temperature, the higher the molar heat capacity
- \(c_m = \left(\frac{N_{\text{DOF}}}{2} \right) \times k \, N_A \)
Good Luck!!!

Feel free to ask any questions you may have!

You got this!!!