
 List architectural elements of modern processors and explain their impact on performance

 Analyze sequential performance, count cache misses, optimize cache performance

 Identify if a given loop is parallel and restructure loops to make them parallel (privatize,

shared vars, etc), express loops using OpenMP

 Optimize performance using schedule clauses and explicit non-loop parallelism including

tasks

 Explain the functionality of MPI primitives (including send/recv variants, collectives,

sub-communicators, etc.)

 Describe and characterize the behavior of MPI programs

 Create MPI programs to accomplish a computational task

 Debug MPI programs

 Analyze and derive expressions for completion time of parallel programs based on the

alpha-beta cost model

 Analyze scalability of parallel algorithms and derive their iso-efficiency function

 Explain workings of covered parallel algorithms and reason about their efficacy and of

variants

 Answer questions about parallel application domains and their characteristics, as well as

computational challenges in those domains

Textbook and Readings

There is no required textbook for this course.

Sample syllabus - students received the detailed syllabus at the beginning of
the semester they are enrolled in the course.

CS 484 Parallel Programming

Course Description

This course is about writing effective programs to harness the unprecedented power provided by

modern parallel computers, so that the programs attain the highest possible levels of

performance the machines are capable of. The parallel computers we focus on include multi-core

processors as well as clusters and supercomputers made from them. The programming systems

and methodologies we learn will include OpenMP, Pthreads, MPI and Charm++. However, the

focus of the course is not so much on the mechanics of these programming systems as on how to

use them to attain and improve high performance. This performance orientation pervades

throughout the course, and is enhanced by several case studies, small enough to understanding

the lecture format yet complex enough to illustrate performance issues and trade-offs. The

course also teaches an adequate analytical framework for understanding performance, including

performance models, scalability analysis, and iso-efficiency.

Course Goals and Objectives

By the end of the course, you will be able to: Write efficient parallel programs for multicore

processors and distributed memory machines. Specifically:

Recommended sources and books:

 OpenMP 4.5 standard (from https://www.openmp.org/specifications/)

 MPI 3.1 report (https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf)

Course Outline

This 4-credit hour course is 16 weeks long. You should invest 6-10 hours every week in this

course.

Week Duration Topic Relevant Concepts and Techniques

1
Performance with

Complexity

Moore’s Law, Parallelism, Latency and Bandwidth,

Pipelining, Branch Prediction

2
Caches and Memory

Optimizations

Caches and Cache performance, Prefetching, Virtual

Memory, Data Layout

3
Shared Memory

Programming

Vectorization, SIMD, Tools, Shared Memory Machines,

Parallel loops and OpenMP

4 Basic OpenMP

OpenMP parallel loop construct, Sharing of variables,

Dependencies and restructuring, Loop schedules,

Parallel construct (without "for")

5 Advanced OpenMP
Synchronization, Critical sections, Sequential

consistency, Flush construct, Case studies

6
Performance Issues

in OpenMP

Cache related performance issues, False sharing, Nested

parallelism, Explicit dependencies, Tasks

7 Midterm Exam

8
Distributed Memory

Programming

Pthreads, C++11 Atomics, Parallel Queues, Distributed

Memory Machines, Basic MPI

9 MPI Collectives
Send/Recv Variants, Collective operations, sub-

communicators, parallel Prefix,

10
Spring Break - no

class

11
Other Distributed

Models

Cost Model, One-sided communication, Hybrid

programming (MPI + OpenMP)

12 Theoretical Models Charm++

13 Parallel Algorithms
Sorting algorithms, Algorithms for Broadcast/Reduction

and collective operations, Scalability and Isoefficiency

14
Distributed Parallel

Applications

Matrix Multiplication, Interconnection Topologies,

Fault Tolerance

15
Parallel Languages

Overview

Parallel Discrete Event Simulations, Combinatorial

Search, GPGPUs

16 Final Exam Other Parallel languages, future perspectives

Assignment Deadlines

For all assignment deadlines, please refer to the Course Assignment Deadlines, Late Policy,

and Academic Calendar page.

Elements of This Course

The course is comprised of the following elements:

 Lecture Videos. In each week, the concepts you need to know will be presented through

a collection of short video lectures. You may stream these videos for playback within the

browser by clicking on their titles or download the videos. You may also download the

slides that go along with the videos. The videos usually total 1.5 to 3 hours each week.

You should generally spend at least the same amount of time digesting content in the

video. The actual amount of time needed to digest the content will vary based on your

background.

 Orientation Quiz. The purpose of the orientation quiz is to ensure that you have gone

through the orientation module and acquired the necessary information about the course

before you start it. The orientation quiz is a required activity, but it's not part of the

course grading. You have unlimited attempts on the orientation quiz. You need to answer

all questions correctly in order to pass the orientation quiz.

 Graded Quizzes. Each week concludes with a graded quiz. You will be allowed

unlimited attempts for each graded quiz with your highest attempt score used towards

your final grade. There is no time limit on how long you take to complete each attempt at

the quiz. Graded quizzes will be used when calculating your final score in the class.

 Programming Assignments. There are 4 total programming assignments in this course.

The first one (MP0) requires no coding and is mainly meant to make sure you all have

access to course resources (campus cluster and VM-Farm). You may invest 5-7 hours on

each of the programming assignments. For more information about the programming

assignments, please read the instructions on programming assignment in respective

weeks.

 Homework Assignments. There are 4 homework assignments.

 Project. The project will be a significantly larger programming assignment compared to

the four machine problems and will require much more time. It will be assigned towards

the end of the semester.

 Proctored Exams. There are 2 proctored exams in this class. The exams will be

proctored via a proctoring service called ProctorU. For more information about ProctorU

and the proctor exams, read the Proctored Exam page.

Grading Distribution and Scale

Grading Distribution

Assignment Occurrence
Percent of the Final

Grade

Graded Quizzes Weeks 1-6, 8, 9, 11-14 12%

Programming Assignments 1/27, 2/11, 3/14, 4/14 17% (2%, 4%, 5% ,6%)

Homework Weeks 2, 4, 8, 14 16% (4% each)

Midterm Exam Week 7 15%

Final (comprehensive) exam Week 16 25%

Project Week 16 15%

Grading Scale

Letter Grade
Percent

Needed

A 85%

B 70%

C 60%

Please note: This course will be graded on a curve. I.e. depending on the number

of students within each grade range, and the relative difficulty of the components

such as exams and project, the instructor may choose a more lenient (but never

stricter) scale than the above.

Your final grade will be calculated based on the activities listed in the table below. Your official

final course grade will be listed in Enterprise. The course grade you see displayed in Coursera

may not match your official final course grade.

Student Code and Policies

A student at the University of Illinois at the Urbana-Champaign campus is a member of a

University community of which all members have at least the rights and responsibilities common

to all citizens, free from institutional censorship; affiliation with the University as a student does

not diminish the rights or responsibilities held by a student or any other community member as a

citizen of larger communities of the state, the nation, and the world. See the University of Illinois

Student Code for more information.

Academic Integrity

All students are expected to abide by the campus regulations on academic integrity found in the

Student Code of Conduct. These standards will be enforced and infractions of these rules will not

be tolerated in this course. Sharing, copying, or providing any part of a homework solution or

https://apps.uillinois.edu/selfservice/
http://studentcode.illinois.edu/
http://studentcode.illinois.edu/
http://admin.illinois.edu/policy/code/article1_part4_1-401.html
http://admin.illinois.edu/policy/code/article1_part4_1-401.html

code is an infraction of the University’s rules on academic integrity. We will be actively looking

for violations of this policy in homework and project submissions. Any violation will be

punished as severely as possible with sanctions and penalties typically ranging from a failing

grade on this assignment up to a failing grade in the course, including a letter of the offending

infraction kept in the student's permanent university record.

Again, a good rule of thumb: Keep every typed word and piece of code your own. If you think

you are operating in a gray area, you probably are. If you would like clarification on specifics,

please contact the course staff.

Disability Accommodations

Students with learning, physical, or other disabilities requiring assistance should contact the

instructor as soon as possible. If you’re unsure if this applies to you or think it may, please

contact the instructor and Disability Resources and Educational Services (DRES) as soon as

possible. You can contact DRES at 1207 S. Oak Street, Champaign, via phone at (217) 333-

1970, or via email at disability@illinois.edu.

;

http://disability.illinois.edu/
mailto:disability@illinois.edu

