The problems in this review are designed to help prepare you for your upcoming exam. Questions pertain to material covered in the course and are intended to reflect the topics likely to appear in the exam. Keep in mind that this worksheet was created by CARE tutors, and while it is thorough, it is not comprehensive. In addition to exam review sessions, CARE also hosts regularly scheduled tutoring hours.

Tutors are available to answer questions, review problems, and help you feel prepared for your exam during these times:

Session 1: Sep 19, 7-9pm Spencer and Lola

Session 2: Sep 21, 6-8pm Cano and Julie

Can’t make it to a session? Here’s our schedule by course:

https://care.grainger.illinois.edu/tutoring/schedule-by-subject

Solutions will be available on our website after the last review session that we host.

Step-by-step login for exam review session:

1. Log into Queue @ Illinois: https://queue.illinois.edu/q/queue/844
2. Click “New Question”
3. Add your NetID and Name
4. Press “Add to Queue”

Please be sure to follow the above steps to add yourself to the Queue.

Good luck with your exam!
1. Let \(f(x) = 8x^2 + 5 \). Use the definition of a derivative as a limit to prove that \(f'(x) = 16x \). Show each step in your calculation and be sure to use proper terminology in each step of your proof.

2. Compute the following limit:

\[
\lim_{x \to \infty} \frac{91 \sqrt{x} + 3}{5 - 7 \sqrt{x}}
\]

3. Iodine-131 has a half life of eight days. What is the original mass in milligrams (mg) of a sample if it has decayed to a mass of 150 mg after 21 days?

4. Write an equation for each horizontal asymptote on the graph of the following function. Use limits to justify your answer. We will learn l'Hospital’s Rule and other shortcuts for obtaining limits later. For now, you are not allowed to use these approaches.

\[
\frac{56e^{-5x} - 30}{7e^{-5x} + 10}
\]

5. Compute the following limits:

(a) \[
\lim_{x \to 0} \frac{19x - 5\sin(x)}{2x}
\]

(b) \[
\lim_{x \to 0} \frac{e^{6x} - 1}{e^{3x} - 1}
\]
6. Determine whether the following statements are always true.

(a) A function which is continuous at point (a) must also be differentiable at (a).

(b) If \(f(x) = \sin(x^3) \) and \(g(x) \) is an odd function, then the composite function \(g(f(x)) \) is an odd function.

(c) If the finite limit \(\lim_{t \to 2} \frac{h(t) - h(2)}{t - 2} \) exists.

(d) The function \(y = \frac{9x - 63}{x^2 + 6x - 9} \) has a vertical asymptote at \(x = 7 \).

(e) If the point \((\frac{1}{4}, -4) \) is on the graph of a one-to-one function \(f(x) \), then the point \((4, -\frac{1}{4}) \) must also be on the graph of \(f^{-1}(x) \).

7. Determine the x-intercept on the graph of the following function. Simplify your answer.

\[
 f(x) = e^{9x} - 121e^{7x}
\]

8. Evaluate the following limits and write your answers in simplified form.

(a) \[
 \lim_{x \to \sqrt{2}} \frac{120 \arcsin\left(\frac{x}{2}\right)}{x^2 + 4}
\]

(b) \[
 \lim_{x \to \infty} \frac{13 + 5 \sin(9e^{3x} + 6)}{x^{10}}
\]