
Research Plan: A Complete view of Neural Network Representation
Capabilities

Introduction

Neural networks are a function approximation tool based on running data through a network of
nodes that perform simple computations to output a desired result. These networks are a widely
applied technique in Machine Learning, but their capabilities are not well understood. We know,
for instance, that neural networks with only a few layers can approximate any continuous function
[Hornik et al., 1989] and that there are some functions that can be easily represented with three
layer networks cannot easily be represented with only two [Eldan and Shamir, 2016]. However,
these results do not describe fully the spaces of functions that can be written as a neural network
of a particular size and depth. This is the main thrust of my research plan — to give a thorough
description of the abilities of neural networks of certain sizes to represent functions. This question
is of the utmost importance; one well-known principle about learning systems is that less complex
models generalize better to new data. Therefore, if we want our neural networks to be able to
accurately respond to new situations, it is important to understand how small these networks can
be made. Especially in use cases such as self-driving cars or medical diagnosis, where a wrong
answer can mean life-or-death, it is critical that we be able to guarantee that our algorithms are
highly accurate.

Networks with One Nonlinear Layer

The first step in my plan is to give a complete picture of the basic unit of a neural network: a
network with a single nonlinear layer. All neural networks, including the “deep networks” that
are widely applied in many areas, are composed of many of these single layers. Each layer is
composed of a linear transformation of the data from the previous layer, followed by a nonlinear
“activation”. This is done again and again, with each layer distilling more information about the
data. The nonlinear transformation is what makes it possible for neural networks to be so powerful;
without these nonlinearities, the network would only be able to tell apart two data sets if they were
linearly separable (that is, only if a simple dividing line could be drawn to separate them). These
nonlinear layers seem to be the essence of neural networks, which is why I want to study them
in more detail. The goal of this first step will be to produce an explicit mathematical formulation
of the complexity of representing functions in this single layer framework. More specifically, I
will develop techniques for constructing one-layer approximations of functions and corresponding
lower bounds, based on factors like the desired accuracy of the network, the metric in which that
accuracy is measured, and bounds on the weights within the network. I will also consider additional
assumptions on the structure of these functions, such as radial symmetry which preliminary work
was shown may be useful in improving the bounds.

Multilayer Networks

Once I have a clear understanding of one layer networks, I will approach the problem of represen-
tation for multilayer networks. One established fact from this area of study is that neural networks
with only l layers cannot represent the same set of functions as those with l2 layers without an
exponential blowup in width [Telgarsky, 2016]. One key question is to determine whether this l
vs l2 separation can be improved to kl for some constant k, or perhaps even l + k. Results about
these cases are still unproven, but all previous work in the area seems to suggest that the power of
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a network is related to the quantity wl, where w is the width and l the number of layers. The goal
of this step will be to rigorously show that there are containments between different classes based
on this measure of complexity, or else to point out exceptions to this rule.

Training

So far, my goals in research have to do with clear view of the representation power of general
neural networks — I only focus on what is possible in a general sense, considering all possible
parameter configurations for the network. In the real world, parameters are found by training
procedures that aren’t always perfect. I would like to specifically examine neural networks that
are produced using standard training methods such as gradient descent (which is by far the most
popular training method). Gradient descent is a technique for optimizing the parameters of a neural
network by incrementally changing those parameters. It is not clear, even if neural networks have
a great degree of power, whether gradient descent can find the weights that optimally solve a
given function approximation problem. What we know is that the optimization landscape for
neural networks is very complex, and we are only guaranteed to find a local optimum when we
do gradient descent, rather than the configuration of the network which is truly the best. But if
optimizing neural networks is so hard, why do they work in practice at all? I feel that there must
be some underlying explanation for the good performance of gradient descent as a technique. The
question of why neural networks succeed in training is discussed in Frankle and Carbin [2018],
which posits a theory — that structures existing in the random initialization of networks allow
training to succeed. However, this may only be true for highly overparametrized networks. Giving
rigorous constraints on the types of networks for which this is true is the goal of this step.
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