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Lecture 17:
Atomic States, Angular Momentum
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Today

Schrödinger’s Equation for the Hydrogen Atom
• Radial wave functions, spherically-symmetric excited 
states (“s-states”)

Angular Momentum
• Quantization of Lz and L2
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To solve this problem, we must specify the potential 
energy of the electron.  In an atom, the 
Coulomb force binds the electron to the nucleus.

This problem does not separate in Cartesian 
coordinates, because we cannot write 
U(x,y,z) = Ux(x)+Uy(y)+Uz(z).  However, we can 
separate the potential in spherical coordinates
(r,θ,φ), because:

U(r,θ,φ) = Ur(r) + Uθ(θ) + Uφ(φ)

Potential Energy in the Hydrogen Atom
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Therefore, we will be able to write:

( ) ( ) ( ) ( ), ,r R rψ θ φ θ φ= Θ Φ

Question:
How many quantum numbers 
will be needed to describe 
the hydrogen wave function?
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Wave Function in Spherical Coordinates

We saw that because U depends only on the radius, 
the problem is separable.  The hydrogen SEQ can be 
solved analytically (but not by us).  Here we show the 
solutions and their physical significance.
We can write:

There are three quantum numbers:
• n “principal” (n  ≥ 1)
• l “orbital” (0  ≤ l < n-1)
• m “magnetic” (-l  ≤ m ≤ +l)

x

y
zr

θ

φ
( ) ( ) ( ), , ,nlm nl lmr R r Yψ θ φ θ φ=

What before
we called

( ) ( )θ φΘ Φ

00 0( , , ) ( )n nr R rψ θ φ =

The Ylm are called “spherical harmonics.” 
First, we will only consider l = 0 and m = 0.
These are called “s-states”.  This simplifies 
the problem, because Y00(θ,φ) is a constant
and the wave function has no angular dependence:

Note:
Some of this nomenclature 
dates back to the 19th century,
and has no physical significance.

These are states in which the
electron has no orbital angular
momentum.  This is not possible
in Newtonian physics. (Why?)
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Radial Eigenstates of Hydrogen

Here are graphs of the s-state wave functions, Rno(r) , for the electron in 
the Coulomb potential of the proton.  The zeros in the subscripts are a 
reminder that these are states with l = 0 (zero angular momentum!).
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You will not need to 
memorize these 
functions. -13.6 eV
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You can prove these are solutions by 
plugging into the ‘radial SEQ’ (Appendix).

n=1 n=2 n=3
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An electron, initially excited to the n = 3 energy level of 
the hydrogen atom, falls  to the n = 2 level, emitting a 
photon in the process.  

1) What is the energy of the emitted photon?
a) 1.5 eV b) 1.9 eV c) 3.4 eV

2) What is the wavelength of the emitted photon?
a) 827 nm b) 656 nm c) 365 nm

ACT 1: Optical Transitions in Hydrogen
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Next week: Laboratory 4
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Probability Density of Electrons
|ψ|2 = Probability density = Probability per unit volume ∝ for s-states.
The density of dots plotted below is proportional to      . 
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Radial Probability Densities for S-states
Summary of wave functions and radial probability densities
for some s-states.  
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radial wave functions radial probability densities, P(r)
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The radial probability density has an extra 
factor of r2 because there is more volume 
at large r.  That is, Pn0(r) ∝ .

This means that:  
The most likely r is not 0 !!!
Even though that’s where 
|ψ(r)|2 is largest.

http://www.falstad.com/qmatom/

2 2
0nr R

This is always a confusing point.
See the supplementary slide for
more detail.

http://www.falstad.com/qmatom/


Lecture 17, p 12



Lecture 17, p 13

What is the normalization constant for the 
hydrogen atom ground state?

/
100 10( , , ) ( ) or ar NR r Neψ θ φ −= =

0
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r0 4a0

R10

Wave Function Normalization
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0

5

0
0

ψ(r) = R10 (r)

/( ) or ar Ne−ψ =

4a0

rs

Estimate the probability of finding the electron within 
a small sphere of radius rs = 0.2 ao at the origin.

Probability Calculation
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Summary of S-states of H-atom

The “s-states” (l=0, m=0) of the Coulomb potential have 
no angular dependence.  In general:

because Y00(θ,φ) is a constant.

Some s-state wave functions (radial part):
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S-state wave functions are 
spherically symmetric.

|ψ20(r,θ,φ)|2 :

http://www.falstad.com/qmatom/

http://www.falstad.com/qmatom/
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The Ylm(θ,φ) are known as “spherical harmonics”.

They are related to the angular momentum of the electron.

Total Wave Function of the H-atom

We will now consider non-zero values of the other two 
quantum numbers:  l and m.

• n “principal” (n  ≥ 1)
• l “orbital” (0  ≤ l < n-1)
• m “magnetic” (-l  ≤ m ≤ +l)

( ) ( ) ( ), , ,nlm nl lmr R r Yψ θ φ θ φ=

x

y
z r

θ

φ

* The constraints on l and m come from the boundary conditions one must impose on
the solutions to the Schrodinger equation. We’ll discuss them briefly.

*
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Quantized Angular Momentum
Linear momentum depends on the wavelength (k=2π/λ):

Angular momentum depends on the tangential component of the 
momentum.  Therefore Lz depends on the wavelength as one moves 
around a circle in the x-y plane.  Therefore, a state with nonzero Lz has a 
similar form:

An important boundary condition:
An integer number of wavelengths must fit around the circle.
Otherwise, the wave function is not single-valued.

This implies that m = 0, ±1, ±2, ±3, …
and Lz = 0, ±ħ, ±2ħ, ±3ħ, …

Angular momentum is quantized!!

Reminder:

eimφ = cos(mφ) + i sin(mφ)

 where ( ) ikxp k x eψ= ∝

 where ( ) ( , ) im
Z lmL m r Y e φψ θ φ= ∝ ∝





http://www.falstad.com/qmatom/

We’re ignoring 
R(r) for now.

Re(ψ)

φ

Lz

http://www.falstad.com/qmatom/
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Summary of quantum numbers for the H-atom orbitals:

The l Quantum Number

In the angular wave function ψlm(θ,φ)
the quantum number l tells us the total angular momentum L.

L2 = Lx
2 + Ly

2 + Lz
2 is also quantized. The possible values of L2 are:

The quantum number m reflects the component of angular momentum 
about a given axis.

2 2( 1)  where 0,1, 2, ...L = + =l l l

Principal quantum number: n = 1, 2, 3, ….
Orbital quantum number: l = 0, 1, 2, …, n-1
Orbital ‘magnetic’ quantum number: m = -l, -(l-1), … 0, … (l-1),  l

Wave functions can be eigenstates of both L2 and LZ. 
For spherically symmetric potentials, like H-atom, they can also be 
eigenstates of E.  Such states are called “orbitals”.

 where m 0, 1, 2, ...zL m= = ± ±
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( )2 2( 1)  not L = +  

2l l l

Angular Momentum & Uncertainty Principle  

Note that                                     .
Also, we describe angular momentum using only two numbers, l and m.
Q: Why can’t we specify all three components (e.g., L =(0,0,l) so that L2= l2?
A: The uncertainty principle doesn’t allow us to know that both Lx = 0

and Ly = 0 unless Lz = 0 also.

Proof by contradiction: Assume L =(0,0,l). (If L doesn’t look like this, 
orient coordinate system so it does.)  

We specify all three components.  Is this possible??
But                , so if L points exactly along the z-axis, both r and p lie in the x-y plane.
This means that ∆z = 0 and ∆pz = 0, violating the uncertainty principle.
Thus, L must have a nonzero Lx or Ly, making L2 somewhat larger.
We can’t specify all three components of the angular momentum vector.

This logic only works for L ≠ 0.   L = (0,0,0) is allowed.  It’s the s-state.

All physical quantities are subject to uncertainty relations,
not just position and momentum.

L r p= ×


 
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Classical Picture of L-Quantization

e.g., l = 2 2 2( 1) 2(2 1) 6 2.45L l l= + = + = ≈   

L = √6 Lz

+2

+

0

-

-2

L r p= ×


 

If we know Lz, then we don’t know anything about Lx and Ly
If we know Ly, then we don’t know anything about Lx and Lz
If we know Lx, then we don’t know anything about Ly and Lz
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We’ve just seen that we cannot have the total orbital angular momentum 
vector of an atom pointing definitely along the z-axis.  Consider a p-state 
which has l=1:
If we measure Lz = , what can we say about Lx, the x-component of the 
angular momentum?

a) Lx = 0 
b) Lx = 
c) Lx = -
d) any of the above
e) none of the above

Act 2
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Next Week

Multi-electron atoms

Covalent bonds in molecules
Electron energy bands in solids

QM in everyday life

Next Time

Electron orbitals in atoms

Electron ‘spin’ and the Stern-Gerlach experiment



Appendix: Solving the ‘Radial’ SEQ for H 
--deriving ao and E

 For this equation to hold for all r, we must have:
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 Substituting                          into ,  we get:rNe)r(R α−=
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Let’s look at the n=1, l=0 state (the “1s” state):  ψ(r,θ,φ) ∝ R10(r) ∝ e-r/a0.

So, P(r,θ,φ) = ψ2 ∝ e-2r/a0.  
This is the volume probability density.

If we want the radial probability density,
we must remember that:

dV = r2 dr sinθ dθ dφ
We’re not interested in the angular distribution, so to calculate P(r) we
must integrate over θ and φ.  The s-state has no angular dependence, 
so the integral is just 4π.  Therefore, P(r) ∝ r2e-2r/a0.

The factor of r2 is due to the fact that there is more 
volume at large r. A spherical shell at large r has
more volume than one at small r:

Supplement: Why Radial Probability Isn’t 
the Same as Volume Probability

P(r)

0 4a0
0

r

0

5

r0 4a0
0

P(r,θ,φ)

Compare the volume of the two 
shells of the same thickness, dr. 



Lecture 17, p 28



Lecture 17, p 29

Supplement:   Potential Energy in the Hydrogen Atom

2

( ) eU r
r
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= −
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0
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1 9 10  Nm /C
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= = ×κ
πε

Time Independent Schrodinger’s Equation

( ) ( )
2 2

2

2
e r E r

m r
κ ψ ψ

 
− ∇ − = 

 

  

In Cartesian Coordinates:

( ) ( )
2 2 2 2 2

2 2 22
e r E r

m x y z r
κ ψ ψ

  ∂ ∂ ∂
− + + − =  ∂ ∂ ∂  

  

In Spherical Coordinates it looks more complicated.  It’s like the way in 
which dV looks more complicated in Spherical Coordinates compared to 
Cartesian Coordinates 

2 sindV dxdydz r drd dθ θ φ= =
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Time Independent Schrodinger’s Equation

( ) ( )
2 2
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e r E r
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In Cartesian Coordinates:

( ) ( )
2 2 2 2 2

2 2 22
e r E r

m x y z r
κ ψ ψ

  ∂ ∂ ∂
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In Spherical Coordinates:

( ) ( )
2 2 2 2

2
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1 1sin
2 sin sin

er r E r
mr r r r
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θ θ θ θ φ
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This is SEPARABLE!  (thankfully!!)
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Supplement:   Potential Energy in the Hydrogen Atom
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2 2 2
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In Spherical Coordinates:

( ) ( )
2 2 2 2

2
2 2 2

1 1sin
2 sin sin

er r E r
mr r r r

κθ ψ ψ
θ θ θ θ φ

  ∂ ∂ ∂ ∂ ∂
− + + − =  ∂ ∂ ∂ ∂ ∂  

  

Plug this into TI-SEQ.  Divide by RY.  Multiply by 2 22mr− 

Only depends on r Only depends on θ and φ

Therefore each side equals a constant,             , l must be 0, 1, 2, ...( )1l l +

Let’s separate the r dependence from the θ and φ dependences.  Write

( ) ( ) ( ),r R r Yψ θ φ=
 same

Supplement:   Potential Energy in the Hydrogen Atom


	Slide Number 1
	Today
	Potential Energy in the Hydrogen Atom
	Slide Number 4
	Wave Function in Spherical Coordinates
	Radial Eigenstates of Hydrogen
	ACT 1: Optical Transitions in Hydrogen
	Slide Number 8
	Next week: Laboratory 4
	Probability Density of Electrons
	Radial Probability Densities for S-states
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Summary of S-states of H-atom
	Slide Number 16
	Total Wave Function of the H-atom
	Quantized Angular Momentum
	The l Quantum Number
	Slide Number 20
	Slide Number 21
	Classical Picture of L-Quantization
	Act 2
	Slide Number 24
	Next Week
	Appendix: Solving the ‘Radial’ SEQ for H --deriving ao and E
	Supplement: Why Radial Probability Isn’t �the Same as Volume Probability
	Slide Number 28
	Supplement:   Potential Energy in the Hydrogen Atom
	Slide Number 30
	Slide Number 31

