Lecture 16:
3D Potentials and the Hydrogen Atom

3D infinite potential well (cubic) 3D Coulomb potential well (hydrogen)

v (% Y,2) = p(X)e(y)e(2) (r)= Jﬂ? ot
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Today

3-Dimensional Potential Well:
Separable - Product wave functions
Degeneracy
Probability density and normalization

The Hydrogen Atom:
Early experiments
Semi-quantitative picture from uncertainty principle
Hydrogenic ions
Next time: Separable - Product wave functions
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Quantum Particles in 3D Potentials

Areal (2D) “guantum dot”

So far, we have considered quantum particles
bound in one-dimensional potentials. This
situation can be applicable to certain physical
systems but it lacks some of the features of
most real 3D quantum systems, such as
atoms and artificial structures.

http://pages.unibas.ch/phys-meso/Pictures/pictures.html

One consequence of confining a quantum particle in
two or three dimensions is “degeneracy” -- the existence
of several quantum states at the same energy.

To illustrate this important point in a simple system,
let’s extend our favorite potential - the infinite square well - to three dimensions.
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Particle ina 3D Box (1)

The extension of the Schrdodinger Equation (SEQ) to 3D is
straightforward in Cartesian (X,y,z) coordinates:

hZ aZl//-l_aZl// 621//
ox> oy® oz°

o + J+U(x,y,2)w =Ey where ¥ =w(X,Y,2)
N ol o
Kinetic energy term: %(Px +p2+ pz)
Let’s solve this SEQ for the particle in a 3D cubical box:

o outside box, xoryorz<0
U(x,y,z) =4 0 inside box
o outside box, xoryorz>L

This U(x,y,z) can be “separated”:
U(x,y,z) = U(x) + U(y) + U(2)

U = « if any of the three terms = «.
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Particle ina 3D Box (2)

Whenever U(X,y,z) can be written as the sum of functions of the individual
coordinates, we can write some wave functions as products of functions of

the individual coordinates: (see the supplementary slides)
l//(X, Y, Z) = f(x)g (y)h(z) 2D wave functions:
. (N (N
For the 3D square well, each function is S'”( L XJS'”[VTVJ
simply the solution to the 1D square well
problem: () = (1.1) (nny) = (1,2)

. (nx h? (n Y
f (X)=Nsin| *—x| E =—- =2
" L 2m \ 2L

Similarly for y and z.

Each function contributes to the energy.
The total energy is the sum:

Etotal = E, + E, + E,

http://www.falstad.com/gm2dbox/
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http://www.falstad.com/qm2dbox/

Supplement: Separation of Variables (1)

In the 3D box, the SEQ is:

n 0%y 82t,z/ O’y
Partial derivatives.

NOTE:
2m( oy 8zj (U +UW)+U@)y =Ev |

Let’s see if separation of variables works.
Substitute this expression for y into the SEQ:

w(X,y,2) =1(x)g(y)h(z)

nt(  d¥ _ d’g , d°h NOTE:
Zm[gth fhdyg fgd?j (U(X)+U(y)+U(2))fgh=E fgh  Toral derivatives.

Divide by fgh:

1d% 1d%g 1d*h )
Zm[f v +ad—y2+——j (U(x)+U(y)+U(z))=E
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Supplement: Separation of Variables (2)

Regroup:
2 2 2 2 2 2
LA SYTO LA Lok ROV B Lo YT =
2m f ox 2m g dy 2m h dz
A function of x A function of y A function of z

We have three functions, each depending on a different variable,
that must sum to a constant.
Therefore, each function must be a constant:

h? 1d°f
omiac TI=E
" 1dy

2m g dy?
1 1d*h
2m h dz?

E,+E, +E,=E

+U(y)=E, Each function, f(x), g(y), and h(z)
satisfies its own 1D SEQ.

+U(z) =E,
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Particle ina 3D Box (2)

Whenever U(X,y,z) can be written as the sum of functions of the individual
coordinates, we can write some wave functions as products of functions of

the individual coordinates: (see the supplementary slides)
l//(X, Y, Z) = f(x)g (y)h(z) 2D wave functions:
. (N (N
For the 3D square well, each function is S'”( L XJS'”[VTVJ
simply the solution to the 1D square well
problem: () = (1.1) (nny) = (1,2)

. (nx h? (n Y
f (X)=Nsin| *—x| E =—- =2
" L 2m \ 2L

Similarly for y and z.

Each function contributes to the energy.
The total energy is the sum:

Etotal = E, + E, + E,

http://www.falstad.com/gm2dbox/
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Particle in a 3D Box (3)

The energy eigenstates and energy values in a 3D cubical box are:

=N sin nXTcx sin M sin nZnz Z
L L L’ L

2

T g2

2 A A
(nZ+nZ+n?)

where n,,n,, and n, can each have values 1,2,3,....

This problem illustrates two important points:

Three quantum numbers (n,,n,,n,) are needed to identify the state of
this three-dimensional system.

That is true for every 3D system.

More than one state can have the same energy: “Degeneracy”.
Degeneracy reflects an underlying symmetry in the problem.
3 equivalent directions, because it's a cube, not a rectangle.
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Cubical Box Exercise

Consider a 3D cubic box:

U} Nsm( X xjsm(my]sm(
Show energies and label (n,,n,,n,) for the first 11 L L
states of the particle in the 3D box, and write the ’

nTE
L

2 2 2
(nZ+nZ+n?)

degeneracy, D, for each allowed energy. Define " gml2
E,= h?/8mL?2.
A Z
= (n,.nyn,) Degeneracy

6E, —— (2,1,1) (1,2,1) (1,1,2) D=3

3Eo—T— @1.1,1) D=1
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Act 1

For a cubical box, we just saw that the 5" energy level is at 12 E,,
with a degeneracy of 1 and quantum numbers (2,2,2).

1. What is the energy of the next energy level?
a. 13E, b. 14E, c. 15E,

2. What is the degeneracy of this energy level?
a. 2 b.4 C.6
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Non-cubic Box

Y4
Consider a non-cubic box:
The box is stretched along the y-direction. L,
What will happen to the energy levels? v
Define E,= h?/8mL,? >
L, > L,
A y
= L,

11E0.. .............

9EO.. ............

GEO... ...........

3E0... ............
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Act 2

Consider a particle in a 2D well, with L, = L, = L.
1. Compare the energies of the (2,2), (1,3), and (3,1) states?
a. Eg 2 > Eu 3 = Egyy

b. E,2) = Eu 3 = E
c. Bz < Eu 3 = Egyy

2. If we squeeze the box in the x-direction (ie., L, < L))
Compﬂre E(1'3) WI‘I‘h E(3,1).

a. E(1'3) < E(311)
b. E(113) - E(311)
C. E(113) > E(3'1)
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Probability Exercise

Consider an electron in a 3D rectangular box of
size 1 x 1 x 2 nm. Assuming the electron is in the
lowest energy state, what is the (approximate)
probability to find it at the center of the box,
within a region 0.1 x 0.1 x 0.1 nm?

2 nm

X

Just as in 1D problems, the probability to find a
particle is given by the integral of the probability y
density (= |y|?) over the region of interest. 1

1nm

We properly normalize v by forcing the integral of |y|? over all space = 1.

For an infinite 3D well, we have |y, :\/LZ \/LZ \/LZ sin(kxx)sin(kyy)sin(kzz)
Y z

X
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Another 3D System: The Atom
-electrons confined in Coulomb field of a nucleus

Early hints of the quantum nature of atoms:

Discrete Emission and Absorption spectra Atomic hydrogen

o When excited in an electrical discharge, atoms 0 50 0 =
emit radiation only at discrete wavelengths

 Different emission spectra for different atoms

A (nm)

Geiger-Marsden (Rutherford) Experiment (1911):

« Measured angular dependence of a particles (He ions) Au
scattered from gold foil. /
o Mostly scattering at small angles > supported the y
“plum pudding” model. But...

« Occasional scatterings at large angles - Something massive in there!

o Conclusion: Most of atomic mass is concentrated

in a small region of the atom mm) a nucleus!
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Atoms: Classical Planetary Model

(An early model of the atom)

. Classical picture: negatively charged objects T e
(electrons) orbit positively charged nucleus due to F /
Coulomb force. / ° \

« There is a BIG PROBLEM with this: L tZe

o As the electron moves in its circular orbit, it is -
ACCELERATING.
o As you learned in Physics 212, accelerating
charges radiate electromagnetic energy.
: ®
o Consequently, an electron would continuously J
lose energy and spiral into the nucleus in about
10-° sec.

mm) The planetary model doesn’t lead to stable atoms.



Hydrogen Atom - Qualitative

Why doesn’t the electron collapse into the nucleus, E
where its potential energy is lowest? N

We must balance two effects: =

As the electron moves closer to the nucleus, xe?
its potential energy decreases (more negative): U =-—

r
. 2
However, as it becomes more and more D ~ h KE ~_
confined, its kinetic energy increases: 2mr 2
2 2
: Ke
Therefore, the total energy is: E =KE +PE = f i
2mr r
- . h? The “Bohr radius”
E has a minimum at: r ~ e a8, =0.093 nm 't haiom.
‘\
mx’e’ Th d stat
I I ~ N € grouna state energy
At this radius, E ~ th "\\13'6 % of the hydrogen atom.
T One factor of e or e2 comes
: : : . T from the proton charge,
Heisenberg’'s uncertainty principle prevents the atom’s collapse. and one f'?om the e|e%tron,
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Act 3

Consider an electron around a nucleus that has two protons,

like an ionized Helium atom.

1. Compare the "effective Bohr radius” a; ., with the usual
Bohr radius for hydrogen, a,:

hz
r =~ =a. =0.053 nm
a. dope > do mie? 0

The “Bohr radius”

b. a = a
0.He 0 of the H atom.

C. Go,He ¢ Qo

2. What is the ratio of ground state energies E, ,,./E, ,4?
a. Eo e/Eon = 1
b. Eope/Eon = 2
c. Eo /o = 4
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Next Lectures

Angular momentum -> atomic orbitals

“Spin” = Pauli Exclusion Principle
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