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“All of modern physics is governed  by 
that magnificent and thoroughly 
confusing discipline called quantum 
mechanics...It has survived all tests and 
there is no reason to believe that there 
is any flaw in it….We all know how to 
use it and how to apply it to problems; 
and so we have learned to live with the 
fact that nobody can understand it.” 

   --Murray Gell-Mann 
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Lecture 11: 
Particles in (In)finite Potential Wells 
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 This week and last week are critical for the course: 
 Week 3, Lectures 7-9:  Week 4, Lectures 10-12: 

 Light as Particles   Schrödinger Equation   
 Particles as waves   Particles in infinite wells, finite wells 
 Probability   Simple Harmonic Oscillator   
 Uncertainty Principle   

Next week: 
 Homework 4 covers material in lecture 10 – due on Thur. after midterm.  
  We strongly encourage you to look at the homework before the midterm! 
 Discussion: Covers material in lectures 10-12.  There will be a quiz.  
 Lab:  Go to 257 Loomis (a computer room). 
  You can save a lot of time by reading the lab ahead of time –  
  It’s a tutorial on how to draw wave functions. 

Midterm Exam Monday, week 5 
 It will cover lectures 1-12 (except Simple Harmonic Oscillators)  
 Practice exams:  Old exams are linked from the course web page. 
 Review  Sunday before Midterm 

 Office hours:  Sunday and Monday  
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Last Time 

Schrodinger’s Equation (SEQ) 
 A wave equation that describes spatial and time dependence of Ψ(x,t). 
 Expresses KE +PE = Etot 
 Second derivative extracts -k2 from wave function. 

 

Constraints that ψ(x) must satisfy 
 Existence of derivatives (implies continuity). 
 Boundary conditions at interfaces. 

 

Infinitely deep 1D square well (“box”) 
 Boundary conditions → Discrete energy spectrum:  

     En = n2E1, where E1 = h2/8mL2. 
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Today 

“Normalizing” the wave function 
 

General properties of bound-state wave functions 

 

Particle in a finite square well potential 
 Solving boundary conditions 
 Comparison with infinite-well potential 
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Constraints on the Form of ψ(x) 

|ψ(x)|2 corresponds to a physically meaningful quantity:  
the probability density of finding the particle near x.  
To avoid unphysical behavior, ψ(x) must satisfy some conditions: 
 

ψ(x) must be single-valued, and finite. 
 Finite to avoid infinite probability density. 

 

ψ(x) must be continuous, with finite dψ/dx. 
 dψ/dx is related to the momentum. 

 

In regions with finite potential, d2ψ/dx2 must be finite.   
 To avoid infinite energies. 
 This also means that dψ/dx must be continuous. 

 
There is no significance to the overall sign of ψ(x). 
It goes away when we take the absolute square. 

{In fact, we will see that ψ(x,t) is usually complex!} 
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Act 1 

(a) (b) 

1. Which of the following wave functions corresponds to a particle 
 more likely to be found on the left side?  

ψ(x) 

0 x 

ψ(x) 

0 x 

(c) 
ψ(x) 

0 x 
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Solution 

(a) (b) 

1. Which of the following wave functions corresponds to a particle 
 more likely to be found on the left side?  

ψ(x) 

0 x 

ψ(x) 

0 x 

(c) 
ψ(x) 

0 x 

None of them!    

(a) is clearly symmetrical. 

(b) might seem to be “higher” on the left 
than on the right, but only the absolute 
square determines the probability.   

|ψ|2 

0 x 
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“Again an idea of Einstein’s gave me the lead. He had tried to make the duality of 

particles – light quanta or photons - and waves comprehensible by interpreting the 

square of the optical wave amplitudes as probability density for the occurrence of 

photons. This concept could at once be carried over to the Ψ-function: | Ψ |2 ought to 

represent the probability density for electrons (or other particles). It was easy to assert 

this, but how could it be proved?”                           M. Born, Nobel Lecture (1954). 
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Probabilities 
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Often what we measure in an experiment is the probability density, |ψ(x)|2.  
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Probability and Normalization  
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⎝ ⎠
We now know that                                    .  How can we determine B1? 
 
We need another constraint.  It is the requirement that  
total probability equals 1.  
  
The probability density at x is |ψ (x)|2: 

 

 
Therefore, the total probability is the integral: 

 
In our square well problem, the integral is  
simpler, because ψ = 0 for x < 0 and x > L: 

 

Requiring that Ptot = 1 gives us: 

|ψ|2 

0 x L 

n=3 
|B1|2 

Integral under  
the curve = 1 

1
2B
L

=

( )
2

totP x dxψ
∞

−∞

= ∫
2

2
1

0

2
1

sin

2

L

tot
nP B x dx
L

LB

π⎛ ⎞
= ⎜ ⎟

⎝ ⎠

=

∫



Lecture 11, p 12 

Probability Density  

( ) 2 2sin nP x N x
L
π⎛ ⎞

= ⎜ ⎟
⎝ ⎠

In the infinite well:                                      .   (Units are m-1, in 1D) 
 
Notation:  The constant is typically written as “N”, and 
is called the “normalization constant”.  For the square well: 
 
One important difference with the classical result: 
For a classical particle bouncing back and forth in a well, the probability 
of finding the particle is equally likely throughout the well. 
For a quantum particle in a stationary state, the probability distribution is 
not uniform.  There are “nodes” where the probability is zero! 
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Example of a microscopic potential well 
-- a semiconductor “quantum well” 

Deposit different layers of atoms on a substrate crystal: 

AlGaAs       GaAs   AlGaAs 

U(x) 

 x 

An electron has lower energy in GaAs 
than in AlGaAs.  It may be trapped in 
the well – but it “leaks” into the 
surrounding region to some extent 

Quantum wells like these are used for light 
emitting diodes and laser diodes, such as the 
ones in your CD player.   
The quantum-well laser was invented by Charles 
Henry, PhD UIUC ’65. 
This and the visible LED were developed at UIUC by 
Nick Holonyak. 
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What if the walls of our “box” aren’t infinitely high? 
We will consider finite U0, with E < U0, so the particle is still trapped. 
 
This situation introduces the very important concept of “barrier 
penetration”. 
 
As before, solve the SEQ in the three regions. 
 
Region II:  
U = 0, so the solution is the same as before: 
 
We do not impose the infinite well boundary 
conditions, because they are not the same here. 
We will find that B2 is no longer zero. 
 
Before we consider boundary conditions,  
we must first determine the solutions in regions I and III. 

1 2( ) sin cosII x B kx B kxψ = +
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Particle in a Finite Well (1) 
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Regions I and III:  
U(x) = Uo, and E < U0 

 
The SEQ                                         can be written: 
 
 
 
 
where: 
 
 
The general solution to this equation is: 
Region I: 
 
Region III: 
 
C1, C2, D1, and D2, will be determined by the boundary conditions. 
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In region II this  
was a + sign. 

U0 > E: 
K is real. 

Because E < U0, these regions  
are “forbidden” in classical particles. 

Particle in a Finite Well (2) 
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1 2( ) Kx Kx
I x C e C eψ −= +

Important new result!  (worth putting on its own slide)   
 
For quantum entities, there is a finite probability amplitude, ψ, to find 
the particle inside a “classically-forbidden” region, i.e., inside a 
barrier. 
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Particle in a Finite Well (3) 
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In region III, the wave function has the form 
 
 
1.  As x à ∞, the wave function must vanish.  

(why?)  What does this imply for D1 and D2? 
 
 a. D1 = 0  b. D2 = 0  c. D1 and D2 are both nonzero. 

 
 
2.  What can we say about the coefficients C1 and C2 for the wave 

function in region I? 
 

 a. C1 = 0  b. C2 = 0  c. C1 and C2 are both nonzero. 
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Act 2 



Lecture 11, p 18 

In region III, the wave function has the form 
 
 
1.  As x à ∞, the wave function must vanish  

(why?).  What does this imply for D1 and D2? 
 
 a. D1 = 0  b. D2 = 0  c. D1 and D2 are both nonzero. 

 
 
2.  What can we say about the coefficients C1 and C2 for the wave 

function in region I? 
 

 a. C1 = 0  b. C2 = 0  c. C1 and C2 are both nonzero. 
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Since eKx à ∞ as x à ∞, D1 must be 0. 

1 2( ) Kx Kx
III x D e D eψ −= +

1 2( ) Kx Kx
I x C e C eψ −= +

Solution 
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In region III, the wave function has the form 
 
 
1.  As x à ∞, the wave function must vanish  

(why?).  What does this imply for D1 and D2? 
 
 a. D1 = 0  b. D2 = 0  c. D1 and D2 are both nonzero. 

 
 
2.  What can we say about the coefficients C1 and C2 for the wave 

function in region I? 
 

 a. C1 = 0  b. C2 = 0  c. C1 and C2 are both nonzero. 

U(x) 

0 L 

U0 

I II III 

E 

ψ	

ψ	



Since eKx à ∞ as x à ∞, D1 must be 0. 

Kx is negative for x < 0.  e-Kx à ∞ as x à- ∞.  So, C2 must be 0. 

1 2( ) Kx Kx
III x D e D eψ −= +

1 2( ) Kx Kx
I x C e C eψ −= +

Solution 



Lecture 11, p 20 

Summarizing the solutions in the 3 regions: 
 
Region I: 
 
Region II: 
 
Region III: 
 
As with the infinite square well, to determine  
parameters (K, k, B1, B2, C1, and D2) we must 
apply boundary conditions. 

2( ) Kx
III x D eψ −=

1( ) Kx
I x C eψ =

1 2( ) sin( ) cos( )II x B kx B kxψ = +
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Useful to know: 
In an allowed region,  
ψ curves toward 0. 
In a forbidden region, 
ψ curves away from 0. 

Particle in a Finite Well (4) 
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The boundary conditions are not the same as 
for the finite well.  We no longer require that 
ψ = 0 at x = 0 and x = L. 
 
Instead, we require that ψ(x) and dψ/dx be  
continuous across the boundaries: 
 

	

ψ is continuous  dψ/dx is continuous 
 
At x = 0: 
 
 
At x = L: 
 
Unfortunately, this gives us a set of four transcendental equations.  
They can only be solved numerically (on a computer).   
We will discuss the qualitative features of the solutions. 

II III
II III

d d
dx dx
ψ ψ

ψ ψ= =

I II
I II

d d
dx dx
ψ ψ

ψ ψ= =

U(x) 

0 L 

U0 

I II III 

E 
ψ	



Particle in a Finite Well (5) 
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What do the wave functions for a particle  
in the finite square well potential look like? 
 
They look very similar to those for the  
infinite well, except … 
 
The particle has a finite probability  
to “leak out” of the well !! 
 
Some general features of finite wells: 
•  Due to leakage, the wavelength of ψn is longer for the finite well. 

 Therefore En is lower than for the infinite well. 
 
•  K depends on U0 - E.   For higher E states, e-Kx decreases more slowly.  

 Therefore, their ψ penetrates farther into the forbidden region. 
 
•  A finite well has only a finite number of bound states.   

 If E > U0, the particle is no longer bound. 

U(x) 
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Particle in a Finite Well (6) 

Very nice Java applet: 
http://www.falstad.com/qm1d/ 
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2.  For a particle in a finite square well, which of the following 
will decrease the number of bound states?   

1.  Which has more bound states?   

a. particle in a finite well 
b. particle in an infinite well 
c. both have the same number of 
bound states. 

a. decrease well depth U0 
b. decrease well width L 
c. decrease m, mass of particle 

3.  Compare the energy E1,finite of the lowest state of a finite well 
with the energy E1,infinite of the lowest state of an infinite well of 
the same width L. 
a. E1,finite < E1,infinite  b. E1,finite > E1,infinite  c. E1,finite = E1,infinite  



Solution 

2.  For a particle in a finite square well, which of the following 
will decrease the number of bound states?   

1.  Which has more bound states?   

a. particle in a finite well 
b. particle in an infinite well 
c. both have the same number of 
bound states. 

a. decrease well depth U0 
b. decrease well width L 
c. decrease m, mass of particle 

3.  Compare the energy E1,finite of the lowest state of a finite well 
with the energy E1,infinite of the lowest state of an infinite well of 
the same width L. 
a. E1,finite < E1,infinite  b. E1,finite > E1,infinite  c. E1,finite = E1,infinite  

A particle in an 
infinite well has an 
infinite number of 
states. 



Solution 

2.  For a particle in a finite square well, which of the following 
will decrease the number of bound states?   

1.  Which has more bound states?   

a. particle in a finite well 
b. particle in an infinite well 
c. both have the same number of 
bound states. 

a. decrease well depth U0 
b. decrease well width L 
c. decrease m, mass of particle 

All three choices are correct: 
a makes fewer energy levels have E < U0. 
b and c raise the energy of each energy    
level. 

NOTE: For a particle in a 1-dimensional potential well, there is 
always at least one bound state. 

A particle in an 
infinite well has an 
infinite number of 
states. 



The wavelength in the finite well is longer, because it is not required to go to 
zero at x = 0 and x = L (it “leaks” out a little).  Thus, the momentum p = h/λ is 
smaller, and so is the energy.  That’s true in general; the less one confines an 
object, the lower its energy can be - a consequence of the Heisenberg 
Uncertainty Principle. 

Look at the wavefunctions for the two situations: 
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Solution 

Kruse Demo 
(wvfn) 

3.  Compare the energy E1,finite of the lowest state of a finite well 
with the energy E1,infinite of the lowest state of an infinite well of 
the same width L. 
a. E1,finite < E1,infinite  b. E1,finite > E1,infinite  c. E1,finite = E1,infinite  

www.falstad.com/qm1d 
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Summary 
Particle in a finite square well potential 

 •  Solving boundary conditions: 
  You’ll do it with a computer in lab.  We described it qualitatively here. 

 
 •  Particle can “leak” into forbidden region. 
  We’ll discuss this more later (tunneling). 

 
 •  Comparison with infinite-well potential: 
  The energy of state n is lower in the finite square well potential 
    of the same width. 
  We can understand this from the uncertainty principle. 

 


