Simulations of Compact Binary Mergers: From Gravity to Nuclear Physics

Elias Roland Most

INSTITUTE FOR ADVANCED STUDY

Princeton Gravity Initiative PRINCETON

UNIVERSITY

Elias Roland Most

ICASU Conference

Today's talk

Dense nuclear matter

U.U.

waves

Extreme plasmas

Ve

u d

Today's protagoníst:

Neutron star

What does a neutron star look like?

How big is a neutron star? About 20-30 km in diameter

How massive is a neutron star?

Around I-2 solar masses

What does a neutron star look like?

How big is a neutron star? About 20-30 km in diameter

How massive is a neutron star?

Around I-2 solar masses

05/21/2022

What is a neutron star made of?

$$\bar{\rho} \simeq \frac{\text{mass}}{\text{volume}} \simeq \frac{M}{\frac{4}{3}\pi R^3} \simeq \frac{2 \times 10^{33} \text{ g}}{4 \times (10^5 \text{ cm})^3} \approx 5 \times 10^{14} \frac{\text{g}}{\text{cm}^3}$$

Elias Roland Most

ICASU Conference

Neutron stars as probes of fundamental physics!

Elias Roland Most

ICASU Conference

Today's protagoníst:

Time to impact -15ms

Late stage gravitational wave emission leads to inspiral and merger!

The physics of compact binary mergers

 $G_{\mu\nu} = 8\pi T_{\mu\nu}$

General relativity

 $p = p\left(\rho, T, Y_e\right)$

Elias Roland Most

 $\nabla_{\mu}F^{\nu\mu} = 4\pi \mathcal{J}^{\nu}$

$$\nabla_{\mu}T^{\mu\nu} = 0$$

Hydrodynamics

 $n \rightarrow p + e^- + \bar{\nu}_e$

Nuclear physics Electrodynamics Weak interactions

ICASU Conference

Animations: Breu et al.

The final fate of a neutron star binary

The final fate of a neutron star binary

First direct detection of a gravitational wave signal from neutron star coalescence happened only in 2017.

Elias Roland Most

ICASU Conference

The final fate of a neutron star binary

Neutron stars in binary are tidally deformed by companion

Tidal deformation correlates with the size of neutron stars.

e.g. Flanagan & Hinderer (2008)

Elias Roland Most

ICASU Conference

The final fate of a neutron star binary Gravitational waves Neutron star GW170817 Image: Colspan="2">Image: Colspan="2" Image: Colspa

How large can neutron stars be?

e.g. Annala+, De+, **ERM+ (PRL 2018)**, Chatziioannou+, Raithel+ and many others

+ X-ray constraints: Riley+, Miller+, Raaijmakers+, Dietrich+ and others! Constraining neutron star radii with gravitational waves from the inspiral.

Elias Roland Most

ICASU Conference

The equation of state after GW170817

see works by Annala+, Chatziioannou+, Essick+, Dai+, Landry+, LVC+, De+, Margalit+, Ruiz+, Shibata+, Radice+, Raithel+, *and many more*!

also joint constraints with NICER: Riley+, Miller+, Raaijmakers+, Dietrich+ and others!

Elias Roland Most

ICASU Conference

Elias Roland Most

ICASU Conference

mergers as cosmic colliders?

Can these events reveal extreme states of matter?

e.g. **ERM**+ (PRL 2019); **ERM**+ (EPJA 2020); **ERM** & Raithel (2021)

Elias Roland Most

ICASU Conference

ICASU Conference

Answering this question can give crucial insights into neutron star properties.

Elias Roland Most

ICASU Conference

The multi-messenger picture Electromagnetic counterparts as new windows into the physics of the merger!

Elias Roland Most

 Mass ejecta are a site for heavy element production.
 (r-process nucleosynthesis)

Kilonova Afterglow

Elias Roland Most

ICASU Conference

Kilonova Afterglow

Elias Roland Most

ICASU Conference

Kilonova Afterglow

2

Elias Roland Most

ICASU Conference

2000 5000 10000 20000 **+0.5d** 10000K -15.0 +0.7d 7600K +1.0d -15. log $F_{\lambda,o}$ (ergs s⁻¹ cm⁻² Å⁻¹) 6600K +1.5d 5100K +2.5d -16.0 3700k +3.5d 3300K -16.5 +4.5d 800k -17.0 +8.5d w2m2w1uUBgVrizYJHK В 2000 20000 5000 10000 Rest wavelength (Å)

Kilonova Afterglow

Elias Roland Most

ICASU Conference

ERM & Philippov

(ApJL 2020)

Precursor Emission??

ERM & Philippov (ApJL 2020; arXiv:2022) (Palenzuela, Beloborodov, East, Lyutikov, Lai,...)

Kilonova Afterglow

Elias Roland Most

ICASU Conference

Need a multi-scale, multi-physics approach to interpret multi-messenger events!

Elias Roland Most

ICASU Conference

The many faces of neutron star mergers

Neutrino physics

Nuclear physics

Gravitational physics

Plasma physics

10⁻⁷ മ

oland Most

ICASU Conference

The many faces of neutron star mergers

Gravitational physics

Plasma physics

107 🛥 🛛 oland Most

ICASU Conference

Precursor Emission??

ERM & Philippov (ApJL 2020; arXiv:2022) (Palenzuela, Beloborodov, East, Lyutikov, Lai,...)

Kilonova Afterglow

Elias Roland Most

ICASU Conference

Elias Roland Most

ICASU Conference

Elias Roland Most

ICASU Conference

ICASU Conference

From gravity to nuclear physics Gravitational waves Jets

Initial state

Preequilibrium

QGP

of QGP or hadron gas

Hydro expansion

Freeze-out S.Bass

hadronisation

Decay channels

Elias Roland Most

ICASU Conference

Elias Roland Most

ICASU Conference

From gravity to nuclear physics

Elias Roland Most

ICASU Conference

Probing exotic states of matter

Simulation: **ERM**+ (PRL 2019) Visualisation: L. Weih

ICASU Conference

Mergers in the

Elias Roland Most

ICASU Conference

05/21/2022

U

d

Can quarks be seen in gravitational waves?

Continued presence of small quark fraction leads to a de-phasing of the waveform in the post merger

Elias Roland Most

Cornell Physics Special Colloquium

Can we systematically survey dense matter imprints?

Breakthrough computing: Modular Unified Solver of the Equation of State

Elias Roland Most

ICASU Conference

Beyond the equation of state!

Weak interactions are crucial for neutron star matter:

Equilibrium $n \rightarrow p + e^- + \bar{\nu}_e$ (reactions balance) $p + e^- \rightarrow n + \nu_e$

Out-of-equilibrium (reactions do NOT balance)

ERM+ (MNRAS 2022)

Feedback on the matter during merger can act as an effective bulk viscosity.

Alford+ (2017,2021), **ERM**+ (MNRAS 2022), Hammond+(2021) Feedback on matter can (drastically) alter post-merger dynamics!

Elias Roland Most

Elias Roland Most

ICASU Conference

-0.5

What does bulk viscosity do?

An oscillating neutron star (periodic compression and expansion) then would damp on a characteristic time scale $\tau = \frac{2\rho c_s^2}{\zeta \omega^2}$

where ω is the oscillation frequency

Can bulk viscosity damp post-merger oscillations?

Cerda-Duran (2010)

Elias Roland Most

ICASU Conference

Projected impact of bulk viscosity **ERM+** (MNRAS 2022) km km km x \mathcal{X} \mathcal{X} 12-12-1212-121210 10 10 5 55[km] $\log_{10}|$ -5-10 $-0.5\,\mathrm{ms}$ $t = 3.0 \,\mathrm{ms}$ -10

Quantify potential impact using bulk pressure scalar Π .

Locally, up to 4% difference in pressure due to neutrino bulk viscosity!

Elias Roland Most

Projected impact of bulk viscosity **ERM+ (MNRAS 2022)** km km km xx \mathcal{X} 12-121212-12-1210 10 10 5 55[km 0 $\log_{10}|$ -5-5-10 -10-10 $t = 3.0 \,\mathrm{ms}$ $-0.5\,\mathrm{ms}$

Quantify potential impact using bulk pressure scalar Π .

Difference in post-merger GW emission!

Elias Roland Most

ICASU Conference

The many faces of neutron star mergers

Neutrino physics

Nuclear physics

ICASU Conference

Gravitational physics

05/21/2022

107 🛥 🛛 oland Most

Extreme plasmas on the outside!

Electromagnetic precursors

ICASU Conference

Electromagnetic precursors

Elias Roland Most

ICASU Conference

Electromagnetic precursors Adding the right twist

Electromagnetic precursors Adding the right twist

Elias Roland Most

ICASU Conference

Electromagnetic precursors Adding the right twist

ERM & Philippov (ApJL 2020)

Elias Roland Most

ICASU Conference

A new radio transient?

Differential motion leads to the emission of strong electromagnetic flares.

Relativistic force-free electrodynamics simulations in corotating frame

A new radio transient?

Prior to merger, potentially up to 20* sufficiently strong flares could be emitted

(*: for $B \simeq 10^{11} \, \text{G}$).

ERM, Philippov (arXiv:2022)

Are these flares observable?

Radio search for GW170817

Callister+ (2019)

Elias Roland Most

ICASU Conference

The many faces of neutron star mergers

Neutrino physics

Gravitational physics

Plasma physics

10⁻⁷ മ

oland Most

ICASU Conference

Need a multi-scale approach to capture (effects of) all scales!

Effective models

(e.g., moment methods)?

Elias Roland Most

ICASU Conference

Model local AND global scales

While accounting for microphysics on small scales, we want to capture global dynamics within the same simulation.

Adopting a fluid-like* description, allows to implicitly overstep scales, and to use mesh-refinement techniques.

* <u>Caveat</u>: Single-velocity description

Inspiration from nuclear physics

Non-equilibrium transport is critical to understand momentum anisotropies in heavy-ion collisions.

e.g., Romatschke+(2008), Denicol+(2012,2018,2019), Kovtun+(2017), Bemfica+(2017,2022), and many others

Leverage advances made by the nuclear physics community to study astrophysical systems!

Elias Roland Most

ICASU Conference

Hydrodynamics as an effective theory

Hydrodynamics

Collisional ($\lambda \simeq 0$)

$$\nabla_{\mu} T_{\text{hydro}}^{\mu\nu} = 0$$

$$(\lambda \sim 0)$$
mean free path λ

Kinetic theory

$$p^{\mu}\partial_{\mu}f = \mathscr{C}\left[f\right]$$

Collisionless ($\lambda \simeq L$)

Elias Roland Most

ICASU Conference

• • •

Hydrodynamics as an effective theory

Perturbatively include corrections to hydrodynamics

$$T^{\mu\nu} = T^{\mu\nu}_{\text{hydro}} + \epsilon T^{\mu\nu}_{(1)} + \epsilon^2 T^{\mu\nu}_{(2)} + \dots \qquad \epsilon \sim \frac{\lambda}{L} \ll 1$$

Hydrodynamics

$$\nabla_{\mu}T^{\mu\nu}_{\rm hydro} = 0$$

Collisional ($\lambda \simeq 0$)

Dissipative Hydrodynamics

$$\nabla_{\mu}T^{\mu\nu} = 0$$

Kinetic theory

$$p^{\mu}\partial_{\mu}f = \mathscr{C}\left[f\right]$$

Collisionless $(\lambda \simeq L)$

Elias Roland Most

ICASU Conference

mean free path λ

New Physics at every order! $T^{\mu\nu} = T^{\mu\nu}_{hydro} +$

ERM+ (MNRAS 2022)

Bulk viscosity in neutron star mergers

See also Alford+, Celora+, Hammond+

PU Grad. Student

Alex Pandya

Novel approaches to simulations of first-order relativistic hydrodynamics

Mathematical formulation based on: Bemfica+(2017,2022), Kovtun+(2017)

Pandya, ERM, Pretorius (PRD, in press)

Elias Roland Most

ICASU Conference

New Physics at every order! $T^{\mu\nu} = T^{\mu\nu}_{hydro} + \epsilon T^{\mu\nu}_{(1)}$

"Magnetic fields are the Unsung Workhorses of Astrophysics" P.Sutter (<u>space.com</u>)

Dynamos and resistive effects in neutron star mergers

ERM+ (in prep)

Dissipative Magnetohydrodynamics

ERM & Noronha (PRD 2021); ERM, Noronha & Philippov (arXiv, 2021)

Novel numerical scheme to simulate this!

Alternative formulations: Andersson+,Chandra+, Dommes+,Gusakov+, Rau & Wasserman,...

Elias Roland Most

ICASU Conference

Dissipative Magnetohydrodynamics

First numerical scheme to handle general viscosities in the presence of magnetic fields for relativistic fluids. ERM & Noronha (PRD 2021)

Leverages a 14-moment closure derived from kinetic theory by the nuclear physics community.

Elias Roland Most

Denicol+(2018,2019)

Novel <u>fully flux conservative</u> <u>approach</u> with stiff relaxation.

Well suited to handle highly turbulent astrophysical flows!

ICASU Conference

New Physics at every order!

ERM & Philippov (in prep)

Reconnection powered transients Current force-free electrodynamics simulation <u>cannot</u> capture reconnection physics correctly. (timescale, dissipation rate, ...)

 $T^{\mu\nu} = T^{\mu\nu}_{\rm hydro} + \epsilon T^{\mu\nu}_{(1)} + \epsilon^2 T^{\mu\nu}_{(2)}$

Need to model e^+e^- dynamics in global simulations.

Dissipative Two-Fluid	MHD
-----------------------	-----

ERM, Noronha & Philippov (arXiv:2021)

Elias Roland Most

ICASU Conference

05/21/2022

Electrons

New Physics at every order!

 $T^{\mu\nu} = T^{\mu\nu}_{\text{hydro}} + \epsilon T^{\mu\nu}_{(1)} + \epsilon^2 T^{\mu\nu}_{(2)}$

A (not so) surprising source of inspiration

Generalize 10-moment two-fluid approach from <u>space physics</u> to relativistic setting!

Wang+(2018)

Need to model e^+e^- dynamics in global simulations.

New Physics at every order!

ERM & Philippov (in prep)

Magnetic dissipation

Reconnection powered transients

 $T^{\mu\nu} = T^{\mu\nu}_{\rm hydro} + \epsilon T^{\mu\nu}_{(1)} + \epsilon^2 T^{\mu\nu}_{(2)}$

Pair plasmas

Positrons

Electrons

ERM, Noronha & Philippov (arXiv:2021)

Black-hole accretion

Chandra+(2015), Foucart+(2016,2017)

Electron-lon

Elias Roland Most

ICASU Conference

The physics of extreme cosmic collisions

Dense nuclear matter

waves

Extreme plasmas

le

* d

Outlook

Neutron star mergers combine different physics on many scales!

ERM & Noronha (2021) ERM+ (MNRAS 2022)

Neutron star mergers

ERM & Philippov (2020, in prep) ERM, Noronha, Philippov (arXiv:2022)

Plasma physics

These can be captured with novel out-of-equilibrium transport models adapted to highly turbulent astrophysical flows!

 10^{-6}

 10^{-4}