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Electromagnetic Astronomy

*Four centuries ago, Galileo first pointed a telescope skyward.

*Since then, we have witnessed remarkable discoveries and have reached deeper understanding of our Universe.

*Electromagnetic spectrum:
. P *EM radiation produced by incoherent superposition of

radiation from individual electrons, atoms or molecules.
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Gravitational-Wave Astronomy

* Gravitational waves are produced by coherent, bulk acceleration of huge amount of mass, either in the form of matter or

the mass-energy of warped space-time.

* Gravitational-wave spectrum
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*Different wavelengths probe black holes of different
sizes (from stellar to billion solar masses), at different
times of their life, interacting with different astrophysical
environments.
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* Different wavelengths probe different cataclysmic
phenomena dominated by gravity, and swift changes in
gravitational field during cosmic expansion.



Probing Astrophysical Objects and Gravity at Different Scales with GWVs
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Gravitational Waves Ushered in New Era of Astrophysics

® Discovery of GW from a binary black-hole
merger by LIGO andVirgo Collaborations
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®Since GWI150914 was observed, 89 more GW
events were discovered; the majority are binary

black holes (BBH), but also 2 binary neutron
stars (BNS) and mixed NSBHs.
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* GW events found also with independent searches.
(Nitz et al. 19-21; Venumadhav et al. 20; Zackay et al. 20, Nitz et al. 21, Olsen et al. 22)


http://arxiv.org/abs/arXiv:1903.04467

Gravitational-Wave Landscape until ~2030
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*From several tens to hundreds of binary
detections per year.

*Inference of astrophysical properties of
BBHs, NSBHs and BNSs in local Universe.

(update of Aasi et al. Living Rev. Rel. 21, 2020)
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Outline

*Observing gravitational waves and inferring astrophysical/physical information hinges on our ability

to make precise predictions of two-body dynamics and gravitational radiation.

*How do we build the hundred-thousand accurate and efficient waveform models employed in LIGO/

Virgo searches and inference studies!?

*Highlights on science (astrophysical-source properties, neutron-star equation-of-state, tests of General
Relativity) from the latest observing run of LIGO andVirgo.

*VWhat have we learned from the “exceptional” GW events of the latest observing run? Is a clear
picture of the population properties of compact-object binaries emerging!?

* |In view of future, ever more sensitive runs and detectors, challenges and opportunities to take full
advantage of discovery potential.


http://arxiv.org/abs/arXiv:1903.04467

Gravitational Waves are Fingerprints of Sources
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* At fixed binary’s mass, the lower the GW frequency, the
larger the binary’s separation, and the earlier the inspiral
stage
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from modulations of amplitude and phase
we infer spins and eccentricity

By comparing to waveforms with deviations
from GR, we can probe gravity



Solving Two-Body Problem in General Relativity

*GR is non-linear theory. RW —

*Einstein’s field equations can be solved:

1 ST

2=

-approximately, but analytically (fast way)

-accurately, but numerically on supercomputers (slow way)

*Synergy between analytical and numerical relativity is crucial
to provide GW detectors with templates to use for searches

and inference analyses.

*Post-Newtonian (PN) (large
separation, and slow motion,
bound motion,i.e., early inspiral)

4 )

expansion in

v2/c? ~ GM/rc? u

binary’s separation

*Post-Minkowskian (PM) (large

separation, unbound motion,

i.e., scattering)

expansion in (5

"
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expansion in mZ/ml

Small mass-ratio (gravitational self-
force, GSF i.e,, early to late inspiral)


http://arxiv.org/abs/arXiv:1903.04467

Solving Two-Body Problem in General Relativity
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*Einstein’s field equations can be solved:

-approximately, but analytically (fast way)

-accurately, but numerically on supercomputers (slow way)

*Synergy between analytical and numerical relativity is crucial
to provide GW detectors with templates to use for searches
and inference analyses.

sEffective-one-body (EOB) theory |
(combines results from all methods, time
i.e., for entire coalescence) %

*Phenomenological frequency-domain
waveforms (Phenom) hybridizing EOB
and NR waveforms, and fitting.
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http://arxiv.org/abs/arXiv:1903.04467
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* We calibrate models to inspiral-merger-ringdown NR waveforms.

10 10
Mass 1 [M ]

gravitational-wave cycles 10l g
56 57 58 59 60 ’\61 62 6364 i o
— . _ | T | | | LA — NR | I
025_/ NN N YN : simulations ~ 0-57O og o
T \ | § 00O SEOBNRv4 _
0.3+ Calibration, no NQC corrections / i A\ 4 & = i | ™
: P A YA W A _I["_\:!’ r X OO SEOBNRv2 2 0.0O >
0) y/ \/ \v \ 1 \ | \ \ S (@) Teukolsky [ g
_().3__ V \I / — a A validation I o g
03l Calibration + NQC corrections i i \% _ mym, —-0.5 O % O :1
oL /\ /\ /\ | M2 [ A ~
0.3 NV \/ - n=S8mi = S8,/m; :8 OA
115_00 11%50 11|600 11650 11%00 11%50 | 11|80(|) lléSO Yo = ﬁ% E% _10_.6 .........................
(t-RYIM M=y M 0.00 0.05 010 0.15 0.20 0.25
[ ex | Y
] 'er}?gé';?\','erf‘frfg?gégggdown' 02/03 . (Pan, AB et al. |3, Taracchini,AB et al. |4, Piirrer 15, Bohé, Shao,
M <4: g Taracchini,AB & SXS |7, Babak et al. |6; Cotesta et al. |18, 20,
Lo e eotoian O Ossokine et al. 20, Khalil,AB et al. 20; SEOBNR)
=
_ S
. . < S (Schmidt et al. | 2; Hannam et al. |3; Khan et al. 1 5; Husa et al.
e Matched fllterlng emP|0)’eC| < QIO |5; Khan et al. 18-19; Garcia-Quiros et al. 20, Pratten et al. 20;
in LIGO/Virgo searches. £ 175,000 PN E IMRPhenom)
 templates —
tor BNSs N (Damour & Nagar 14, Nagar et al. 18, 19, 20, Rettegno et al. 20,
| Riemenschneider et al. 21, Gamba et al. 2|; TEOBResumS)
. (Field et al. I 1,14; Blackman et al. |5; Canizares et al. 15,

Varma et al. | 9; NRSur)


http://arxiv.org/abs/arXiv:1903.04467

GW190814: a Binary with a Puzzling Companion

eEither the largest neutron star or the smallest * The more substructure and complexity the binary has (e.g., masses
black hole. or spins of BHs are different) the richer is the spectrum of radiation

emitted.
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(credit: Fischer, Pfeiffer, Ossokine & AB; SXS Collaboration)



GW190814: a Binary with a Puzzling Companion (contd.)

sEither the largest neutron star or the smallest * The more substructure and complexity the binary has (e.g., masses
black hole. or spins of BHs are different) the richer is the spectrum of radiation
emitted.

my =232 0 My my =2.597008 M,

(Abbott et al. ApJ Lett 896(2020) L44)
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* Using waveform models with higher-modes and

spin-precession constrains more tightly the
secondar'y mass. (credit: Fischer, Pfeiffer, Ossokine & AB; SXS Collaboration)




GW190521: a Signal Produced by the Largest BHs so far

(Abbott et al. PRL 125 (2020) 10,Ap] Lett 900 (2020) L3)
*|ikely, BHs too massive to have been formed from a collapsed
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e Systematics due to waveform modeling are not negligible when spin precession and higher modes are relevant, but they
are still subdominant with respect to statistical uncertainty.



Gravitational-Wave Transient Catalog 3: Source Properties

(Abbott et al. arXiv:2111.03606)
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Gravitational-Wave Transient Catalog 3: Primary-Mass Properties

Using hierarchical Bayesian approach astrophysical merger-rate density
*BBH primary-mass spectrum is not well- 10 BGP
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Constraints on Sub-Solar Ultra-Compact Binaries

eSearch with binary component masses in the range 0.2 — 1 M and no spin. Bank of about one-million templates.

*VWe do not expect BHs/NSs to form in this mass range through conventional stellar evolution. BHs could
form in primordial Universe through large density fluctuations.
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Tests of General Relativity

strong and highly dynamical regime

Solar System LIGO/Virgo/KAGRA/
GRAVITY binary pulsars
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Parameterized Test of GW Generation: Phasing

*BBHs/BNS/NSBH rapidly varying orbital periods allow us to probe gravitational phase (phasing) of GW signals.

o Inspiral (-Plunge): (Blanchet & Sathyaprakash 1995,Arun et al. 06 , Mishra et al. 10, Yunes & Pretorius 09, Li et al. |2)

haw (f) = Aaw (f) etrew(f) paw (f) = @ref + 27 flrer + V7P Z gO(GR) 14+ 00, )v" + Z gO(GR) 14+ 00, 0)v" logv
v = (M f)/3

*PN parameters describe physical effects: spin-orbit and spin-spin couplings, tidal and absorption effects, tails of radiation due
to backscattering with warped geometry.

inspiral-plunge
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GRisat6¢; =0 (Abbott et al. arXiv:2112.0686 1, Mehta,AB, Cotesta, Ghosh & Steinhoff 22)



Parameterized Test of GW Generation: Phasing

*BBHs/BNS/NSBH rapidly varying orbital periods allow us to probe gravitational phase (phasing) of GW signals.

° Inspiral(-PIunge): (Blanchet & Sathyaprakash 1995,Arun et al. 06 , Mishra et al. 10, Yunes & Pretorius 09, Li et al. 12)

haw(f) = Acw (f) €W paw(f) = Pret + 27 ftres + 07 Z P (1 + 64, 0" +Z¢<GR> (1+ 8¢, ¢)v™ log v

v = (M f)H3 " '

*PN parameters describe physical effects: spin-orbit and spin-spin couplings, tidal and absorption effects, tails of radiation due
to backscattering with warped geometry.

inspiral(-plunge)
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Comparing LIGO-Virgo Bounds on PN Parameters with Double Pulsar

PSR J0737-3039 A/B (Double Pulsar) Kramer et al.21) 10'] | ] | I B
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Tests of GR with GW Observations: Remnant Properties

°|n GR, remnant object resulting from coalescence of two astrophysical BHs is a perturbed Kerr BH.

* The remnant BH relaxes to its stationary Kerr state by emitting quasi-normal modes (QNMs).
(Vishveshwara 70, Press 71, Chandrasekhar et al. 75)

*The QNM’s frequencies and decay times only depend on BH’s mass and spin (no-hair conjecture).

(Israel 69, Carter 71; Hawking 71, Bardeen 73)
(Abbott et al. arXiv:2112.06861)

* The no-hair conjecture can be disproved if more than one QNM is observed
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Probing Extreme-Matter with Gravitational Waves

*Neutron-star (NS) properties: f,_fify%l%pe;a(ekri)
-mass: 1 — 3 Mg, m Tl
-radius: 9 — 15km nuc?r censit ;5902 "o ko, [
-inner core density > 2 x (2.8 X 101 ¢/cm> % i
- magnetic field: ~10> X @Earth e . §
- surface temperature: ~10° X @Earth \« §
- pressure: ~10%7 X @Earth \9

& (Haensel et al. 07)
*What is the internal structure and composition Radius (km)

? . S :
of neutron stars! * NS equation of state (EOS) affects gravitational waveform during

, . late inspiral, merger and post-merger.
*New parameter in BNS: tidal deformability A.

signature of tidal deformations in NS

0;=-18, ‘

l
quadrupole moment T external tidal field / \/\/\ \

depends on EOS

binary neutron star black-hole binary



Waveforms for Binary Neutron Stars

*Synergy between analytical and numerical work is crucial.

*Dynamical tides

R r; ! 4 . / Y
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& 0.2}
(Hinderer, ...AB ... et al. 16, Steinhoff, ... AB ... et al. |6, Steinhoff ' ' '
et al. 21) 500 1000 1500

time /M
(credit: Dietrich)

(see also Damour 1983, Flanagan & Hinderer 08, Binnington & Poisson 09, Vines et al. | |, Damour & Nagar 09, |2, Bernuzzi et al. |5, Dietrich et al. | 7-19, Nagar et al. 18, Gamba et al. 20)

*BNS waveforms were used to infer properties of GW 170817 & GW190425.



GW190425: a Binary Neutron Star with Surprisingly High Mass

MAX-PLANCK-GESELLSCHAFT

(Abbott et al. Ap| Lett 892 (2020))
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GW190425: it does not provide tighter constraints on NS EOS
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(Abbott et al. Ap| Lett 892 (2020))
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Waveforms for Neutron-Star—Black-Hole Binaries

*Synergy between analytical and numerical work is crucial.

-
x 102 /
= Hybrid [SXS:BHNS:0006] %
2.97 |---- SEOBNR _NSBH
n — SEOBNR_BBH
< 0.0
O
2.0 NR
region —»
—100 — 75 —50) —25 0 —40 —20 0
t[b‘ t[mb‘ (Matas, Dietrich,AB et al. 2020)

(see also Thompson et al. 2020)
(see also Lackey et al. 14, Pannarale et al. 15, |16, Piirrer et al. |7, Chakravarti et al. 17)

*So far, NSBH waveforms were used to infer properties of GW 190814 and NSBHSs discovered during O3.



GW200115: a BH swallowing the NS whole
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?
) 0
*First robust detection of a mixed binary. ’ 7
> | <

(Abbott et al. AP| 915 (2021))
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(credit: Chaurasia, Dietrich, Fischer, Ossokine & Pfeiffer)



GW200115: a BH swallowing the NS whole

?
) 0
*First robust detection of a mixed binary. , \ <
> | <

*In the future, we might observe NSBHs

GW2001 15 with accretion disk and EM counterpart.

(credit: Chaurasia, Dietrich, Fischer, Ossokine & Pfeiffer)

(credit: Chaurasia, Dietrich, Fischer, Ossokine & Pfeiffer)



Cosmography with Gravitational Waves

e Compact-object binaries are standard candles (sirens).

eStandard candles are sources whose distance from Earth
can be inferred from their luminosity.

Hubble flow
velocity source’s distance — p(Ho | GW170817)
\ / Planck*’
SHoES*®
0.04
VH — H()Cl

=]
(=)
@

!

Hubble constant

e L L U T d0UU7m0UmV T
A ——

Hy = 70.0fé§?dokm/s/Mpc

0.02 +

p(Hgy) (km~1sMpc)

*Exploit identification of 001
host galaxy NGC4993 ;
(optical counterpart) to = o~ 2”
obtain Hubble flow Ho (ks Mpc™)
velocity. (Abbott et al. Nature (2017) 24471)

A ——
A ———

* Measurement of H, improved by 17 — 42 % when considering 47 BBHs
detected in O3. (Abbott et al. arXiv:2111.03604)

* Gravitational lensing

el ike EM waves, GWs can be lensed

by intervening objects (stars, black
holes, galaxies, cluster of galaxies).

*Lensing magnification produces
overall amplification of GWVs.

* Multiple images would appear as
€¢ ’
(credit: Zumalacarregui) repeated” GW events.

*No lensing effects observed, so far.
(Abbott et al. Ap 923 (2021) I, 14)



Forecast of Astrophysical Backgrounds from Compact-Object Binaries

(Abbott et al. arXiv:2111.03634)

Qaw(f)

O3 Sensitivity
| O4 Sensitivity
- Total Backgroundé OS5 Sensitivity
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Upper Limit on Stochastic Gravitational-Wave Background

Dimensionless energy density Q. < 5.8 X 107 at the 95 % credible level for flat (frequency-
independent) GWV background.

(Abbott et al. PRD 104 (2021) 2,022004)
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Upper Limits on Known Pulsars

f spin-down limit
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(Abbott et al. arXiv:2112.10990)

10° 10°
Frequency [Hz|
*Best constraint on ellipticity of known pulsars is 107°, corresponding to NS "mountains” of 100 microns!

(Abbott et al. ApJL 902 (2020) I,L21)



Gravitational-Wave Landscape in late 2030 on the Ground
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Einstein Telescope .(.3G >clence-Case Repor.t.z..l.)...

10221 —aGo - 100 ' ——=Horizon
' N 10% detected
50% detected:
gﬁ 10723 ) 10 -
3 -
4 g
2 ~
3= 10724 1
Median source e BT
N et i I ot AT N
10 100 1000 1 10 100 1000 10000
Frequency [Hz] Total source-frame mass [Mg]
eStellar-mass binaries: *Intermediate Mass-Ratio Inspirals (IMRIs),
with mass ratio 10°
- Observe each year ~ 30 BBH signals, which last for up to 10
minutes, with SNRs > 1000 (and 20,000 BBHs with SNRs > 100).
- Observe each year ~ 10 BNS signals, which last several hours,
with SNRs > 500 (and 780 BNSs with SNRs > 100).
(Borhanian & Sathyaprakash 22) at GW frequency ~1Hz at GW frequency ~10 Hz

(credit: van de Meent)



Gravitational-Wave Landscape in late 2030 in Space

Sun

modulations provide sky location

ESA leading mission with
NASA junior partner

(Audley et al. 17)

10-16 VO i B T B B T l | T T, O, 2 0 8.
; \ Galactic Background
1onth
i |\ day lmm'l()T vt l MBHBs at z = 3
10'1 / - s 3 % Verification Binaries |
; N | = EMRI Harmonics :
E | \ monthn ; LIGO ‘
© - . hour it -type BHBs
C% 107181 \ WPV — GW150914 I
) E \.\'(\;11' Gal Bln (SNR > 7) §
e 1 :
X " \ 10° M ‘,fJ “
~ '19 - A . 1
3 10 \ W
Q : v :
CS I" ]
= 20| —\ A/ |
O 107 Y —
: Observatory -
Characteristic Strain /
21| 1
10 - = Total ]
107 10 107 10 107" 10°
Frequency (Hz)
< >
opening three decades of GW spectrum

sNew GWV sources:

- extreme mass-ratio inspirals (EMRIs)
- massive BHs (MBHs)

- WD binaries in our galaxy
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Scattering Amplitude: A New Way to Study 2-body Problem

eRelativistic 2-body dynamics eClassical scattering: scattering angle ¥ *Quantum scattering amplitude

/

7

(credit: Carvalho)
(credit: Steinhoff)

e.g., in Born approximation: Fourier transform
of potential is related to scattering amplitude

(Cheung et al. 19, 20, Bern et al. 19, Bliimlein

*2-body Hamiltonian at 4PM (3 loops) for nonspinning BHs on hyperbolic orbits. al. 20, Kdlin et al. 20, Bern et al 21, Dalpa

etal. 21)
Small parameter is GM/rc2<<1, v2/¢2 ~ 1, large separation, natural for unbound motion/scattering
H(p,r) = \/p2 +m7 + \/p2 +m3+ V(p,r) V(p,r) = E ci(p?) (|G—|>
I"O
i=1
d°r .
V(l) _ / tree —ir-q
(p;q) 27)3 M (p,q)e

Newtonian potential T T scattering amplitude


http://arxiv.org/abs/arXiv:1903.04467

Assessing Accuracy of PM Calculations: Nonspinning Binary

(Khalil, AB, Steinhoff & Vines 22,AB, Khalil, O’Connell, Roiban, Solon & Zeng 22)
orbits before merger
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o Effective-field-theory and scattering-amplitudes methods have brought new and fresh perspectives (and tools) to solve
the relativistic two-body problem, unveiling new paths to intertwine the different perturbative approaches (PN, PM and GSF).

*Scalability of perturbative approaches remains still uncertain. Resummation methods still needed.

* Waveform accuracy would need to be improved by one or two orders of magnitude depending on the parameter space.


http://arxiv.org/abs/arXiv:1903.04467

*|n June 2021, the ESA’s Director of Science and the Science
Program Committee (SPC) announced the next ESA Science

Program Voyage 2050, selecting three themes:

- Moons of Giant Planets.
Voyage 2050

Final recommendations from

the Voyage 2050 Senior Commitee & - From Temperate Exoplanets to the Milky VVay.

- New Physical Probes of the Early Universe.

“How did the Universe begin? How did the first cosmic structures
and black holes form and evolve? These are outstanding questions in
fundamental physics and astrophysics, and we now have new astronomical
messengers that can address them. Our recommendation is for a
Large mission deploying gravitational wave detectors or precision
microwave spectrometers to explore the early Universe at large
redshifts. This theme follows the breakthrough science from Planck and
the expected scientific return from LISA.”




New Opportunities to Extend the GW Spectrum from Space
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Summary & Outlook

*With Ol & O2 we observed the "tip of the iceberg"” of the binary population, with the improved detectors’
sensitivity, O3 has unveiled a richer picture and several “exceptional” sources.In O3 NSBHs were
observed.

*Some outstanding questions: What is the nature of the secondary object in GW 190814 and GW200210?
What is the origin of the BBHs in the high-mass gap!

*A variety of null tests of GR (agnostic and specific) have been performed, which will be enriched by more
comprehensive tests of modified theories of gravity when inspiral-merger-ringdown waveforms are available.

*Bright future: next few years (decades) will bring hundreds (thousands) more BBH and BNS/NSBH

observations, with diverse properties at much higher SNRs, probing fundamental and subatomic physics,
dark matter, and cosmological model of our Universe.

* To address open questions and take full advantage of discovery potential in next years (and decades),
novel data-analysis methods and high-precision waveforms that cover the entire parameter space and
include all physical effects (higher modes, matter, spin precession, eccentricity, deviations from GR, etc.)
would be needed. Interdisciplinary effort!
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