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How can we study theoretically
the core of the visible matter

from first principles?
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How can we study theoretically
the core of the visible matter

from first principles?

How successful are

theoretical predictions ?
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Structure of visible Matter

o electron
<10""%cm

proton
(neutron)
quark
<10 bcm
nucleus
atom;-1'8cm ~10"%em
~10"%cm
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Structure of visible Matter

o electron
<10""%cm

@ quark

~10"%cm

nucleus
~10""2cm

atom~10*cm

% More than 99% of the mass of
the visible matter comprises of
hadrons (p, n, ...)

% structure of building blocks of
matter governed by the strong force

% The theory of the strong interactions
is Quantum ChromoDynamics (QCD)
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Structure of visible Matter

o electron
<10"%cm

proton
(neutron)

quark
Q <10"%cm

~10"%cm

nucleus
~10""2cm

atom~10*cm

Standard model

% More than 99% of the mass of
the visible matter comprises of
hadrons (p, n, ...)

% structure of building blocks of
matter governed by the strong force

% The theory of the strong interactions
is Quantum ChromoDynamics (QCD)

¢ QUARKS @ LEPTONS @ BOSONS @ HIGGS BOSON

Credit: Symmetry Magazine
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Structure of visible Matter

Q electron
<10""%cm

proton
(neutron)

quark
@ <10""%cm

~10"%cm

nucleus
~10""2cm

atom~10*cm

% More than 99% of the mass of
the visible matter comprises of
hadrons (p, n, ...)

% structure of building blocks of
matter governed by the strong force

% The theory of the strong interactions
is Quantum ChromoDynamics (QCD) July 4, 2012 at CERN

— Credit: Symmetry Magazine
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Investigations of strongly interacting matter

Reproduces rich structure of all
strongly interacting matter

Very elegant, highly non-linear:
Cannot be solved analytically
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Investigations of strongly interacting matter

Reproduces rich structure of all
strongly interacting matter

Very elegant, highly non-linear:
Cannot be solved analytically

D. Leinweber: Quantum fluctuations of QCD vacuum
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Investigations of strongly interacting matter

Reproduces rich structure of all
strongly interacting matter

Very elegant, highly non-linear:
Cannot be solved analytically

D. Leinweber: Quantum fluctuations of QCD vacuum

Confinement - Asymptotic freedom
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0.05 el E—

1 10 100 1000
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Investigations of strongly interacting matter

Reproduces rich structure of all
strongly interacting matter

Very elegant, highly non-linear:
Cannot be solved analytically

D. Leinweber: Quantum fluctuations of QCD vacuum

Confinement - Asymptotic freedom

0.35 T T y
T decay (N3LO) Fo ]

low Q? cont. (N’LO) e~ |

03 | 4 DIS jets (NLO) 1 ]

Heavy Quarkonia (NLO)
e'e jets/shapes (NNLO+res) H* ]
pp/pp (jets NLO) =+

0.25 I EW precision fit (N>LOYe— 7]
pp (top, NNLO) F+ 1

Q%)

0.2

0.15

0.1 |

0.05

perturbation theory
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Investigations of strongly interacting matter

GM

Reproduces rich structure of all
strongly interacting matter

Very elegant, highly non-linear:
Cannot be solved analytically

D. Leinweber: Quantum fluctuations of QCD vacuum

Confinement - Asymptotic freedom

&0
s
® o 0.35 — T T ———rr y
- e ’ T decay (N°LO) Fo- ]
L4 low Q? cont. (N>LO) +e— 1
Quark confinement 03 b ¢ DIS jets (NLO) H ]
T Heavy Quarkonia (NLO)

: : i e"e” jets/shapes (NNLO+res) F* |
Non-perturbative regime 3 _ op/ob (jets NLO) ot ]
0.25 17 EW precision fit (N>LOYe— 7]
I pp (top, NNLO) F+ 1
< I ]

2 o2f

S [

0.15

0.1 [

0.05 |

1

Flux tubes of QCD

Credit: D. Leinweber

perturbation theory

— ICASU Inaugural Conference n


http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/VacuumRespAction16t32_Yshape8.gif
http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/VacuumRespAction16t32_Yshape8.gif

Investigations of strongly interacting matter

Reproduces rich structure of all
strongly interacting matter

Very elegant, highly non-linear:
Cannot be solved analytically

D. Leinweber: Quantum fluctuations of QCD vacuum

- Confinement - Asymptotic freedom
- 035 g T ey (OO T ]
i} M M L low Q? con‘z (N3LO) e ]
Large-scale numerical Quark confinement 03| 9 Hoavy Qs Tets (0N 7 ]
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pp (top, NNLO) -

2 o02f
S [
0.15 |
0.1 F
0.05 L
1
Flux tubes of QCD
Credit: D. Leinweber
Blue Waters supercomputer, NCSA, UIUC (2013 - 2021)
(Picture from Spin Symposium 2016) perturbation theory
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Lattice formulation of QCD

Ideal first principle formulation of QCD
(simulations starting from original Lagrangian)

M. Creutz

K. Wilson
forrl;la:r;:iir? 8274) colr:r:r;t:tnatclircr:r? r(I1C SISO)
* Space-time discretization on a finite-size 4-D lattice =~z
/ - . /74/ X// P
G anns e
Fs //;Z///
D pZ5
% Serves as a regulator: Prasunssl
] ] _ o0 nla dp courtesy: USQCD
UV cut-off: inverse lattice spacing J dp — [ .
—00 —7nla
. . . Now 27 2nn
IR cut-off: inverse lattice size [dpF(p) - ZTF(pO+T)
% Removal of regulator L—> oo, a—0
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Lattice formulation of QCD

M. Creutz

“wieen —]deal first principle formulation of QCD

Lattice QCD First numerical

formulation (1974 (SiMulations starting from original Lagrangian) computation (1980)

% Parameters (define cost of simulations):
quark masses (aim at physical values)
lattice spacing (ideally fine lattices)
lattice size (need large volumes)

% Billions of degrees of freedom:
huge computational power
algorithmic improvements necessary
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Lattice QCD

% Parameters (define cost of simulations):

quark masses (aim at physical values)
lattice spacing (ideally fine lattices)
lattice size (need large volumes)

% Billions of degrees of freedom:

huge computational power
algorithmic improvements necessary

Lattice formulation of QCD

“wien —|deal first principle formulation of QCD
fomulation 1974) - (Simulations starting from original Lagrangian) computation (1980)

M. Creutz

First numerical

Tflop—years

00 02 04 06 08 10
r-hF’S/rnV

“Berlin” Wall plot,
(Lattice Symposium 2001,
Berlin Germany)
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% Parameters (define cost of simulations):
quark masses (aim at physical values)

lattice spacing (ideally fine lattices)
lattice size (need large volumes)

% Billions of degrees of freedom:

huge computational power
algorithmic improvements necessary

Lattice formulation of QCD

“wien —|deal first principle formulation of QCD ] “:'C“a‘“_z |
Lattice QCD . . ; L. ) irst numerica
formulation (1974 (SiMulations starting from original Lagrangian) computation (1980)

T T T
T 2001: (m,/m,)°

|
|
|
|
‘| — 2008: (mv/mps)“_
\
|
|
|

|

Tflop—years

00 02 04 06 08 10
r-hF’S/rnV

“Berlin” Wall plot,
(Lattice Symposium 2001,
Berlin Germany)
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Lattice formulation of QCD

“wien —|deal first principle formulation of QCD ] “:'C“a‘“_z |
Lattice QCD . . ; L. ) irst numerica
formulation (1974 (SiMulations starting from original Lagrangian) computation (1980)

I T T T
T 2001: (m,/m,)°

% Parameters (define cost of simulations):
quark masses (aim at physical values)

— 2008: (m,/m_)*

3k \
lattice spacing (ideally fine lattices) o f ".
lattice size (need large volumes) § \
2 — ‘\ I
| \
= = Q. \\
% Billions of degrees of freedom: © \
|_ 1 — \\ ]

huge computational power
algorithmic improvements necessary

0.0 02 04 06 08 10

BE&«JTTTTTTITTITTITITTTTITTITH®
é e Machine %
; O Machine + Algo; r-hF’S/rnV
’m; - = “Berlin” Wall plot,
s - = (Lattice Symposium 2001,
= 10% E = Berlin Germany)
v (30y) C _
g 104 E =
— @By) E =
S 10°E -
= B
100 E =
1O§IIIIIIIIIIIIIIIIIIIIIII§
1987 1995 2000
= year
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K. Wilson
Lattice QCD

% Parameters (define cost of simulations):
quark masses (aim at physical values)

lattice spacing (ideally fine lattices)

lattice size (need large volumes)

% Billions of degrees of freedom:
huge computational power
algorithmic improvements necessary

[TTTTTTTTT T T T
AN

. e Machine
Q

O Machine + Algo

days)

Z 105
(30y)

104
(3y)
103

T LU LI L0 0L L

real time

100 —
0O(100) less cost

CCTTT T T TR T TTmr TImw T T T

NEEREREN NN NENENENE. ¥

1987 1995 2000
year
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Lattice formulation of QCD

Ideal first principle formulation of QCD
formulation (1974 (SiMulations starting from original Lagrangian)

M. Creutz

First numerical
computation (1980)

Tflop—years

T T T
T 2001: (m,/m,)°

— 2008: (m,/m_)*

|
|
|
|
|
|
|
|
|
|

0.0

02 04 06 08 10
r-hF’S/rnV

“Berlin” Wall plot,
(Lattice Symposium 2001,
Berlin Germany)
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Lattice formulation of QCD

“wien —|deal first principle formulation of QCD ] “:'C“a‘“_z |
Lattice QCD . . ; L. ) irst numerica
formulation (1974 (SiMulations starting from original Lagrangian) computation (1980)

I T T T
T 2001: (m,/m,)°

% Parameters (define cost of simulations):
quark masses (aim at physical values)

l‘| — 2008: (m,/m_)*
S : I 7

huge computational power
algorithmic improvements necessary

lattice spacing (ideally fine lattices) o ".
lattice size (need large volumes) § \
2 B ‘\ ]
| g \
: ol z \
% Billions of degrees of freedom: © \
|_ 1 — \\ ]

L= 0.0 02 04 06 08 10
- % e Machine %
; O Machine + Algo; r-hF’S/rnV
’m; - = “Berlin” Wall plot,
s - = (Lattice Symposium 2001,
= 10% E = Berlin Germany)
o (30y) E _
= = \ =
o= 104 — ”
— By)E =
o — il =g E =
S 100 = = % Critical to improve
- 1= .
100 algorithms based on
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10% NN RN ¥ (100) Computer architecture
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Landscape of numerical simulations

Tflop—years

-| | e
0.2 04 06 0.8

mPS/mV
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Landscape of numerical simulations

Lattice (fermion) formulations employed by various groups:
Wilson, Clover, Twisted Mass, Staggered, Overlap, Domain Wall, Mixed actions

300 . BMW, Ne=2+1 lr'© - ' T
® CLS, N;=2+1
@ PACS, ;\If=2+1 o0 o®
O ETMC, Ni=2 ®
@ ETMC, Ni=2+1+1 ® O ® ..
A MILC, Ni=2+1+1
250 ® NME fo=2+1 ‘
O QCDSF, N=2
@® QCDSF/UKQCD, N;=2+1
—_ B RBC/UKQCD, Nf=2f+1 .A ® A A % '
> ®)
S 200( o 3
=, o L
= ©
[
= . =
150+ O
- — g e TR
0.2 04 06 0.8
mps/ my
100+
| L L
0.00 0.05 0.10 0.15

a [fm]
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Landscape of numerical simulations

Lattice (fermion) formulations employed by various groups:
Wilson, Clover, Twisted Mass, Staggered, Overlap, Domain Wall, Mixed actions

300 sV &
® CLS, N;=2+1
@ PACS, ;\If=2+1 o0 o®
O ETMC, Ne=2 ®
@ ETMC, Ni=2+1+1 ® O ® ..
A MILC, Ng=2+1+1
250 ® NME fo=2+1 ‘
O QCDSF, N=2
@® QCDSF/UKQCD, N;=2+1
—_— B RBC/UKQCD, Nf=2f+1 .A. A A % '
> o
S 200 o 3
=, - L
= ©
Y
& =
150+
g e TR
0.2 04 06 0.8
mps/ my
100+

Ensembles with physical values for quark masses (physical point)

BTl
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How is lattice QCD

related to Nature?
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High-Priority Scientific Questions

Numerical simulations of QCD address aspects of key questions

ICASU Inaugural Conference



High-Priority Scientific Questions

Numerical simulations of QCD address aspects of key questions

How do the properties of nucleons (p,n)
emerge from the dynamics of their
quark and gluon constituents?
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High-Priority Scientific Questions

Numerical simulations of QCD address aspects of key questions

How do the properties of nucleons (p,n)
emerge from the dynamics of their
quark and gluon constituents?

What is the 3-D tomographic mapping
of nucleons (p,n)?

electron

<10"°cm
proton
(neutron)
quark
@ <10""%cm
nucleus -
— ~10"%cm
atom~10"cm ~10""%cm

Wigner Function

Wiy, 5D
G df ‘1
5
Generalized
xy 3D Parton
Distributions
Vi z z X

TMDs GPDs

Transverse
Momentum
Dependent
Distributions
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High-Priority Scientific Questions

Numerical simulations of QCD address aspects of key questions

How do the properties of nucleons (p,n) e @ stectron
emerge from the dynamics of their b (haeon
quark and gluon constituents?

nucleus
~10"2cm

quark
@ <10""%cm

atom~10"*cm ~10"%cm

Wigner Function

v
G dr (1
5
Generalized
xy 3D Parton
Distributions
Vi z z X

TMDs GPDs

What is the 3-D tomographic mapping
of nucleons (p,n)? i

Distributions

To what extent do we understand matter
and energy? |Is there New Physics to be
discovered?

‘XL Ordinary
Matter

T
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Advances of Lattice QCD are timely

U'S.-BASED ELECTRON-ION
COLLIDER SCIENCE

Main Pillar of NAS
Assessment report for EIC

Finding 1: An EIC can uniquely address three profound questions about
nucleons—neutrons and protons—and how they are assembled to form the
nuclel of atoms:

" How does the mass s of the nucleon arlse?4 i
_How does the spin of the nucleon a arise? ¢
“What are the emergent properties of dense systems of gluons?
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Advances of Lattice QCD are timely

Main Pillar of NAS
Assessment report for EIC

Finding 1: An EIC can uniquely address three profound questions about
nucleons—neutrons and protons—and how they are assembled to form the
nuclel of atoms:

"How does the mass of the nucleon anse? 1
_How does thffS_n ofhenucleon' arlse? B
AT at are the emergent propertles 0 ense systems of gluons?

SCIENCE REQUIREMENTS

AND DETECTOR Lattice QCD is featured in the EIC Yellow Report
CONCEPTS FOR THE

(«€T>») ELECTRON-ION COLLIDER - 900-page document
s - scientist from 151 Institutions

Lattice QCD can provide valuable input in
V.. understanding the proton mass and
o spin decomposition from first principles

— ICASU Inaugural Conference m



How do we access
iInformation on the
Internal structure of

hadrons?
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Hadron Structure

% Structure of hadrons explored in
high-energy scattering processes

Artistic impression of
collisions @ EIC
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Hadron Structure

% Structure of hadrons explored in
high-energy scattering processes

Artistic impression of
collisions @ EIC

* Due to asymptotic freedom, e.g.

opis(x, Q) = Z [nyls ®f] (x, 0%)

i

L |

a®b]<x)=r§a(f> b(&)
—) e T \e
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Hadron Structure

% Structure of hadrons explored in
high-energy scattering processes

Artistic impression of
collisions @ EIC

* Due to asymptotic freedom, e.g.

opis(X, 0%) = Z [1513 ®f; ] (X Q%) eow=[ La(2) s

" Non-Perturb. part
¥ (orocess “independent”) }

Perturb. part ,
{ (orocess dependent) §
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Hadron Structure

% Structure of hadrons explored in
high-energy scattering processes

* Due to asymptotic freedom, e.g.

Perturb. part _
¥ (orocess dependent)

% Non perturb. part provides information on
partonic structure of hadrons

% Reveal correlations between the longitudinal
parton momentum and their position in the
transverse spatial plane within a hadron

T

opis(x, Q) = Z [1513 ®f] (X 0?)

" Non-Perturb. part
y (process “independent”) §

Artistic impression of
collisions @ EIC

Deep Inelastic Scattering

pP+N->p+X
4,

xP
P S
) A
y
Aost

Parton Distribution q(x)

f(x)
A%All

x
1 Px

Hard Exclusive Meson Production

L+N->p+N+p°
A

Lz
xP
- ;
x boost

Generalized Parton Distribution
H(x &, t)
f(x, r l)

>
y
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What properties of the
hadrons structure can

Lattice QCD access?
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(Some) open questions in proton structure
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(Some) open questions in proton structure

Where does the proton spin come from?
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(Some) open questions in proton structure

Where does the proton spin come from?

What is the size and shape of the
proton and neutron?

ETil
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(Some) open questions in proton structure

Where does the proton spin come from?

What is the size and shape of the
proton and neutron?

quark

What is the mechanism giving mass to
fundamental particles (p, n, etc)? ucteon

ETil
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Proton spin “puzzie”

Fundamental degree of freedom (from space-time symmetry)
(Proton spin:1/2)

Spin plays an important role in determining the structure of
composite particles, like the proton

Simple models predict that the 3 quarks responsible
for the proton’s quantum numbers carry 1/3 of its spin

1 = = ‘j !
DIS experiments (1988) show surprising results  ** aussesn e w
for proton spin  [J. Ashman et al., Phys. Lett., vol. B206 (1988) 364] vBr ‘

012 b

(x) dx

0.09

1
g

d

0.06

0.03

0
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Proton spin “puzzie”

Fundamental degree of freedom (from space-time symmetry)

(Proton spin:1/2)

Spin plays an important role in determining the structure of

composite particles, like the proton

Simple models predict that the 3 quarks responsible
for the proton’s quantum numbers carry 1/3 of its spin

DIS experiments (1988) show surprising results  **
for proton spin [J. Ashman et al., Phys. Lett., vol. B206 (1988) 364]

1/19: [x) dx

0

015
092 __
0.09 -

SPIN CRISIS !

0.03

ﬂ
™ ELLIS-JAFFE sum rule o xg? x]

4006 +

4 0.0

10.08

b

4 0.04

- 0.02
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Proton spin “puzzie”

Fundamental degree of freedom (from space-time symmetry)

(Proton spin:1/2)

Spin plays an important role in determining the structure of

composite particles, like the proton

Simple models predict that the 3 quarks responsible
for the proton’s quantum numbers carry 1/3 of its spin

DIS experiments (1988) show surprising results
for proton spin  [J. Ashman et al., Phys. Lett., vol. B206 (1988) 364]

1/19: [x) dx

SPIN CRISIS !

0.18

0.15 -

092 __

0.09

0.06 [

0.03

0

4006 +

We must quantify the proton spin decomposition

4 0.0

10.08

4 0.04

- 0.02
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Understanding the proton spin

Experiment Global Analysis
0.08 Sea Asymmetry - ‘- ;':3 W “DESVIeT |
- X(AU - Ad) | @ +pos

0.06|-
. 0.04F
0.04

0.02} Or

- :Iv(A'&—AJ) - maav
- 2 _ 2 0.08F NNPDFpoll.1 |
-0z a7 of\lcl;\le;l[/)?pohj oSS
_0_04:_ 5272 NNPDFpoll.1rw 0.04F
1072 16“ 1
X 0 —
[J. Adam et al. (STAR Collaboration), Q* =10 GeV? | ,
Phys. Rev. D 99, 051102(R)] 001 0
[C. Cocuzza et al. (JAM Collab),
arXiv:2202.03372]

% Significant progress from experiments
and analysis of experimental data sets

- Recent RHIC results on flavor decomposition
of antiquarks in spin

- First data-driven evidence of nonzero
antiguark asymmetry

% Complete spin decomposition still challenging

T
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Understanding the proton spin

Experiment Global Analysis First-principles QCD
o0sF Sea_Asmietry i -;:K [ “DSSV-like” 0.6 : : : : : : :
0.06;_ X(AU - Ad) $pos

0.04} 05p---mmmmmmmmm e ‘|'_ N
0.04 §
0.02} OF 0.4+t g _
., ‘ | ~N
0 ' 7 | ' B a
- 2 5 I m(A'&—Ad) - .IIII;IIIII;F oll.1 | oo 0.3} § -
=7 =)
004l ¥ NNPDFpolt.frw 0.04- 02| ; I 2:\ S 2 g ;,
102 10" 1 ) =) < 3 bt =
X 0 T e 3 5 5z
[J. Adam et al. (STAR Collaboration), =10 Gev? | | 0.1 5 S_ o o E
Phys. Rev. D 99, 051102(R)] o R o SE Ao
[C. Cocuzza et al. (JAM Collab), ' ut 4t st ¢ g Total
arXiv:2202.03372] q =uds,c

. . g . [C. Alexandrou et al. (ETM Collaboration),
% Significant progress from experiments Phys. Rev. D 101, 094513 (2020)]

and analysis of experimental data sets
Total spin fully decomposed

- Recent RHIC results on flavor decomposition from first principles
of antiquarks in spin

- First data-driven evidence of nonzero
antiguark asymmetry

% Complete spin decomposition still challenging

T
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Understanding the proton spin

Experiment Global Analysis First-principles QCD
oosE Se a_A symmetry = ;1:3 1 “DSSV-like” 0.6 : : : : : : :
0.06; X(AU - Ad) $pos

0.04 0'5—_________________________%_
0.04 §o\
0.02 O 0.4 é I
. ‘ ‘ N
% :Iv(A'&—AJ) = >~ 0.3 R )
ocg 0= T0GeF = o = 021 L,
_g.0af- S5 NNPDFpolt. 1w o.0d o2l 2 & & & 5. J
1072 1(;-‘ 1 n =) S S ,9_.1 =)
X 0 N < s = = ~ )
[J. Adam et al. (STAR Collaboration), Q=10 Gev? | | 0.1r 5 g’ ; S " E
Phys. Rev. D 99, 051102(R)] - L o SE Ao
[C. Cocuzza et al. (JAM Collab), ' ut  dt st ¢ g Total
arXiv:2202.03372] q =ud,s,c

. . g . [C. Alexandrou et al. (ETM Collaboration),
% Significant progress from experiments Phys. Rev. D 101, 094513 (2020)]

and analysis of experimental data sets
Total spin fully decomposed

- Recent RHIC results on flavor decomposition from first principles
of antiquarks in spin

- First data-driven evidence of nonzero Resolution of a 35-year old puzzle

antiquark asymmetry Impressive progress in the field

% Complete spin decomposition still challenging leading to new opportunities
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Spin decomposition

0.6
MS(2GeV)
(Y o e i & -
=
e
0.4+ o
)
00 <
0.3} X 2
oo, ' oy (]
—_. o c© <) "
EN - N >
— EN o o = —
0.2F — - BN BN < ~
= = S o 2 =
205 2 e Al
N © = = ™~ S
0.1 ~ ™M N o 10 n
o =1 ) S ~
5 o] « @ ™
— m —l
0.0 | . | . L =
u’ d* s’ c’ E : g Total

% 2-years of intensive calculations with
three distinct components to extract
quark and gluon contributions

% Individual quark spin identified
% Large gluon contributions
% Spin and momentum sum rules satisfied

% Total spin contains:
- intrinsic spin
- orbital angular momentum

T
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0.6 0.6
MS(2GeV) 0.5
11 S s - 04
NS
) 0.3
0.4} o 05
; S g
" 0 3 B O\O :i — 01 -
e ) ©
X — X S 0.0+
— X R o = =
o2l ol & & & 94 & I 01
= : o o ) =
n = - : = m
< - = £ £ o 02
0.1} = ™ N o 10 )
N s, o4 g ~ —0.3
5 o] « @ ™
0.0 | . | Hgl; m; - = | .| | 0.6
u’ d* s’ c’ Z g Total
q"=u,d,s,c
0.4}
% 2-years of intensive calculations with 02|

*
*

Spin decomposition

three distinct components to extract = _ |

quark and gluon contributions

Individual quark spin identified
Large gluon contributions
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% Spin and momentum sum rules satisfied

% Total spin contains:

T

- intrinsic spin
- orbital angular momentum

=
EN
N~
=) X i
M =
® o i
[\l
©
mI |
e R
EN EN EN
© ™~ m
= e S
w0 © S
o . < —
qln 1
l
u d S c Total
o N
BN X X ©
= S Q) u)
=L <= ) a
% in & =
2 @ X = |
N ~ T N —
FSUTTUTTRY | C AU i R = S SN | R
EN
—
—
N I
v
N
<
<5
l
u d S C Total

ICASU Inaugural Conference



Spin decomposition
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% 2-years of intensive calculations with 02| st = £z
three distinct components to extract = | &1 %o 5 £l
quark and gluon contributions . e

02| Sp

% Individual quark spin identified I s e

% Large gluon contributions

% Spin and momentum sum rules satisfied

% Total spin contains:

- intrinsic spin Better understanding of
- orbital angular momentum the spin distribution

Designed by Z.-E. Meziani
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Proton radius crisis

[R. Pohl et al., Nature 466 (2010) 213]

X

X

Hydrogen spectroscopy and nuclear
scattering in agreement

Muonic hydrogen experiment much
more sensitive to proton size

Puzzling discrepancy between different

methods
(within 2 months: 16 theoretical papers)

Discrepancy not fully understood

790
up 2013 + ——e—— electron avg.
—e scatt. JLab
up 2010 |- *— scatt. Mainz
© H spectroscopy
1 l 1 1 1 1 1 l 1 1 1 1 I 1 1
0 zlss 0.54 o.tlzs 0 zlse 0.87 0.88 0.89 0.9

Proton charge radius Rch [fm]
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Credit: Taiwan News
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Extracting the proton radius

Insident e EleCtrOmagnetlc
R form factors

Virtual Y

Electric charge and current
distributions inside nucleon
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Extracting the proton radius

Electromagnetic
form factors

Electric charge and current
distributions inside nucleon
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ETRII Collaboration, PRD 100 (2019) 1, 014509

% Extraction of p and n E/M FFs requires
flavor decomposition (challenging!)

% Lattice QCD results for neutron very

o competitive
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Extracting the proton radius
% Charge radius: slope of FFs at 0> = 0

6 dF;(Q?)

Electromagnetic
form factors (r?) =

Q2=0

T F(Q?)  dQ?

Electric charge and current
distributions inside nucleon
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ETRII Collaboration, PRD 100 (2019) 1, 014509

% Extraction of p and n E/M FFs requires
flavor decomposition (challenging!)

% Lattice QCD results for neutron very
competitive
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Electromagnetic
. 2
form factors (r2y = -0 4F(Q7)
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Extracting the proton radius

% Charge radius: slope of FFs at 0> = 0
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ETRII Collaboration, PRD 100 (2019) 1, 014509

% Extraction of p and n E/M FFs requires
flavor decomposition (challenging!)

% Lattice QCD results for neutron very

competitive
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Extracting the proton radius
% Charge radius: slope of FFs at 0> = 0

Electromagnetic -
form factors 2y = 8 dF(Q7)
) Fq,(Q2) dQZ Q2=0
Electric charge and current O IO, RO ENCN T b Rens
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% Lattice QCD results for neutron very [H. Atac et al., Nature Comm. 12, 1759 (2021)]
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Extracting the proton radius
% Charge radius: slope of FFs at 0> = 0

Electromagnetic -
form factors 2y = 8 dh(Q7)
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% Lattice QCD results for neutron very
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[H. Atac et al., Nature Comm. 12, 1759 (2021)]

More work needed from theory and experiment
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New Physics beyond the
Standard Model of
Particle Physics




Is the Standard Model sufficient to fully describe the building
blocks of nature, or is there new physics to be discovered?
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Is the Standard Model sufficient to fully describe the building
blocks of nature, or is there new physics to be discovered?

% Standard model has
deficiencies, e.g, inability
to explain matter-
antimatter asymmetry
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Is the Standard Model sufficient to fully describe the building
blocks of nature, or is there new physics to be discovered?

% Standard model has % Measurements from fundamental
deficiencies, e.g, inability experiments can potentially
to explain matter- challenge current theoretical
antimatter asymmetry picture indicating new physics
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Dark Matter Searches

DISTRIBUTION OF DARK MATTER IN NGC 3198

m i | ] ] ] I ] L ] ] I L 1 | 1 | ] L ] ] I 1 | | ] _
i NGC 31908 )
26.8% 150 1=
Dark Matter = : halo ;
E 100- i
68.3% PRI ordinary < .
Dark Energy matter ]
50 -
o i 1 1 1 l 1 1 1 3 l 1 1 1 1 l 1 1 | Ll 1 | | 1 i
0 10 20 30 40 50
Radius (kpe)
[T.S. van Albada et al., Astrophys.J. 295 (1985) 305]
% Visible Universe consist a % Rotation curve of galaxies (e.g.,
small amount of the energy- NGC 3198) require velocity
matter content of Universe contributions from dark matter to
match observations besides the
% Evidence of Dark Matter visible baryonic components
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Searches for Dark Matter

_Indirect Detection

o Search fr products of DM ann/h/lat/on o

Dark Matter Standard Model

particles \ /particles
Dark Matter / \Standard Model

particles particles

Direct

Detection ,‘
DM-SM scattering ;
in detector "

Productlon of DM (f/nd anomalous m/ssmg energy)

Investigations are complementary
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Direct searches of Dark Matter

% Direct DM searches look for new scalar
interactions (Higgs boson production)

¥ Nucleon o-terms enter the cross-section of
the DM-nuclel elastic scattering
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Direct searches of Dark Matter

Direct DM searches look for new scalar
interactions (Higgs boson production)

Nucleon o-terms enter the cross-section of
the DM-nuclel elastic scattering

No direct experimental measurements

Indirect extraction from relevant for r — N and K — N scattering
processes
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Direct searches of Dark Matter

Direct DM searches look for new scalar
interactions (Higgs boson production)

Nucleon o-terms enter the cross-section of
the DM-nuclel elastic scattering

No direct experimental measurements

Indirect extraction from relevant for r — N and K — N scattering
processes
o-terms lead to large uncertainties in WIMP-nucleon cross-section
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% Direct DM searches look for new scalar

¥ Nucleon o-terms enter the cross-section of

Direct searches of Dark Matter

interactions (Higgs boson production)

the DM-nuclel elastic scattering

% No direct experimental measurements

% Indirect extraction from relevant for  — N and K — N scattering

processes
o-terms lead to large uncertainties in WIMP-nucleon cross-section

% Lattice QCD offers a great opportunity to extract the nucleon o-terms

o1 = mq,(N|2sqsIN), onry = mua(Nlau + dd|N)
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Direct searches of Dark Matter

% Computationally challenging calculation
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<

[C. Alexandrou et al., Phys. Rev. D 102 (2020) 5, 054517 arXiv:1909.00485]
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1] [C. Alexandrou et al., Phys. Rev. D 102 (2020) 5, 054517 arXiv:1909.00485]
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Direct searches of Dark Matter
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1] [C. Alexandrou et al., Phys. Rev. D 102 (2020) 5, 054517 arXiv:1909.00485]
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Direct searches of Dark Matter
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Lattice results are high-accuracy

Potential to control uncertainties
iIn WIMP-nucleon cross-section
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The Next Frontier:

Electron lon Collider
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U)S.-BASED ELECTRON-ION
COLLIDER SCIENCE

Electron lon Collider

A machine that will unlock the secrets of the strongest force in Nature

NAS report release:
07/24/2018

“The committee finds that the science
that can be addressed by an EIC 1s
compelling, fundamental and timely.”

Glowing report on a
US-based EIC facility!

$2B investment of DOE
to be built at BNL: 01/09/2020
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Electron lon Collider

A machine that will unlock the secrets of the strongest force in Nature

$2B investment of DOE
e NAS report release: to be built at BNL: 01/09/2020

S 07/24/2018

“The committee finds that the science

that can be addressed by an EIC 1s
compelling, fundamental and timely.”

Glowing report on a
US-based EIC facility!

Accelerator Design
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Concluding remarks

ICASU Inaugural Conference



Concluding remarks

% Hadron structure is far beyond their quark content

% Several emergent phenomena due to the complexity of the
strong interaction
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Concluding remarks
Lattice QCD:

% at the forefront of Nuclear and Particle Physics
% finally addressing open scientific questions

% can be used to reliably extract physical quantities difficult to obtain
experimentally

% complements the experimental program of major facilities worldwide

% aligns with the scientific goals of the lllinois Center for Advanced
Studies of the Universe
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