event Horizon Telescope

Charles F. Gammie

with Ben Prather, Michi Baubock, George Wong, Vedant Dhruv, Abhishek Joshi including work presented on behalf of the *Event Horizon Telescope Collaboration*

ICASU conference, May 2022

Interferometry

millimeter VLBI

- 1.3mm VLBI network, $\Delta \theta \sim \lambda / D \sim (1.3mm) / (2 R_{\oplus}) \sim 25 \mu as$
- 2017 campaign: April 5, 6, 7, 10, 11; 6 targets, incl M87 & Sgr A*
- 8 telescopes at 6 sites

credit: ESO+

Why is Sgr A* harder than M87*?

credit: M. Johnson

$$M \simeq 6.6 \times 10^9 \,\mathrm{M_{\odot}}$$

 $\theta_g \equiv \frac{GM}{c^2 D} \simeq 3.8 \,\mu\mathrm{as}$
 $t_g \equiv \frac{GM}{c^3} \simeq 9.0 \,\mathrm{hr}$

 $M \simeq 4.1 \times 10^{6} \,\mathrm{M_{\odot}}$ $\theta_{g} \equiv \frac{GM}{c^{2}D} \simeq 5.0 \,\mu\mathrm{as}$ $t_{g} \equiv \frac{GM}{c^{3}} \simeq 20.4 \,\mathrm{sec}$ ILLINOIS.

M87

Sgr A*

credit: A. Joshi

Simulations and Numerical Experiments

credit: Raley et al., Uni Primary School

Gravitational Macrolensing

1. ideal GRMHD simulation 2. assignment of electron DF 3. radiative transfer calculation \Rightarrow Stokes IQUV(v,x,y,t)

credit: A. Joshi

credit: B. Prather

Constraints on Models

Constraints

EHT-derived constraints 5, including 2nd moment, ring width non-EHT constraints 4, including 86GHz size, flux Variability constraints 2: structural variability, 230GHz flux var.

Model Parameters

- 1. spin
- 2. magnetization (MAD vs SANE)
- 3. inclination
- 4. electron DF assignment parameter Rhigh

credit: B. Prather

 \bigcirc \bigcirc $\mathbf{\mathbf{E}}$ X ()۲ 3330 \bigcirc \bigcirc ×

All constraints except variability

Uncertainties

If you make a theory, for example, and advertise it, or put it out, then you must also put down all the facts that disagree with it, as well as those that agree with it.

-Feynman

- fluid model for collisionless plasma
 - Kn ~ 10⁵
 - nonthermal electron DF
- boundary conditions (wind-fed?)
- model duration
- numerical resolution

Future Prospects

Future Prospects

polarization for Sgr A* denser Fourier space coverage movies 345GHz observations space-based antenna? more predictive numerical models including viscosity and conduction precision bothrology!

Blandford-Znajek Effect

NASA/ESA/Hubble Heritage

Conclusions

- first image of galactic center black hole
- new, improved measurements on the way
- models explain all the data except variability
- variability crisis: origins of flow fluctuations?

