
Smart Grid Control Primer

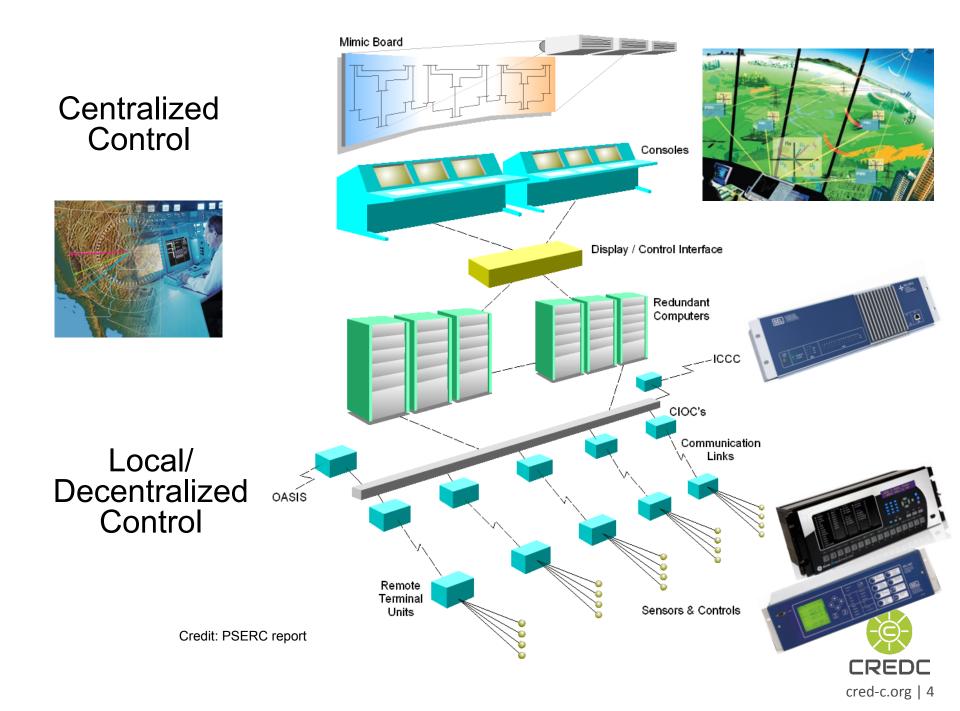
Anurag K Srivastava Washington State University

Smart Grid Goals

- Power System Operational Paradigm (reliability, economics, resiliency, sustainability)
 - Sense
 - Communicate
 - Compute
 - Visualize
 - Control

Communicate

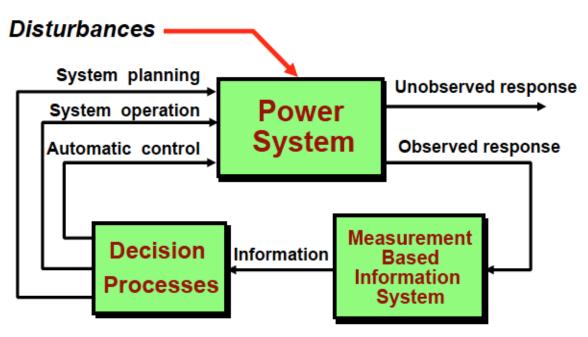
Compute and send Control Signal

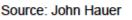

CREDC cred-c.org | 2

 Advancement in physical system, information network, control, human aspects

Control Objective and Multi-scale Dynamics in Power System

Action/operation	Time frame
Wave effects (fast dynamics, lightning caused	Microseconds to milliseconds
over voltages)	
Switching over voltages	Milliseconds
Fault protection	100 milliseconds or a few cycles
Electromagnetic effects in machine windings	Milliseconds to seconds
Stability	60 cycles or 1 second
Stability Augmentation	Seconds
Electromechanical effects of oscillations in	Milliseconds to minutes
motors & generators	
Tie line load frequency control	1 to 10 seconds; ongoing
Economic load dispatch	10 seconds to 1 hour; ongoing
Thermodynamic changes from boiler control	Seconds to hours
action (slow dynamics)	
System security monitoring	Steady state; on-going
Load Management, load forecasting, generation	1 hour to 1 day or longer, ongoing
scheduling	
Maintenance scheduling	Months to 1 year; ongoing
Expansion planning	Years; ongoing
Power plant site selection, design, construction,	10 years or longer
environmental impact, etc.	





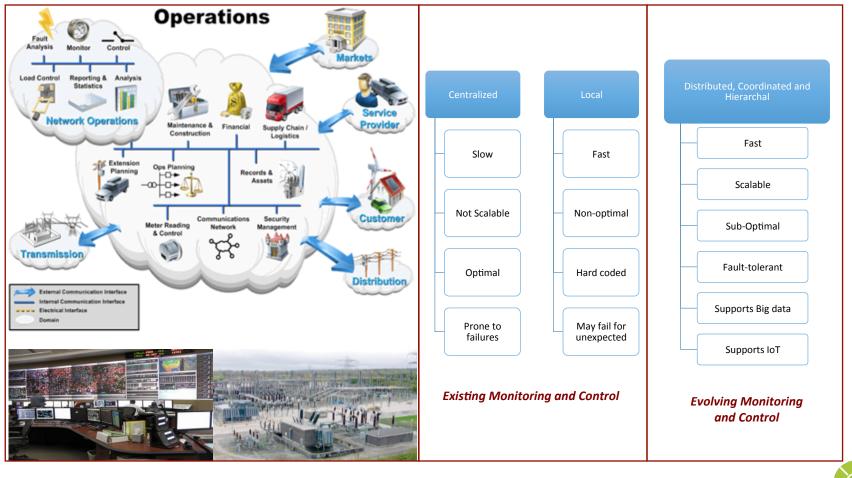
Smart Grid Control

- Voltage, frequency and power control
- Provide operators with up-to-date information on the condition of the power systems
- critical quantities are measured
 - voltages, currents, power flows, and the state of circuit breakers and switches
 - frequency, generator outputs, and transformer tap positions
- the measurements are sent to the control center
 - via the telemetry system

Better Information Supports Better Decisions

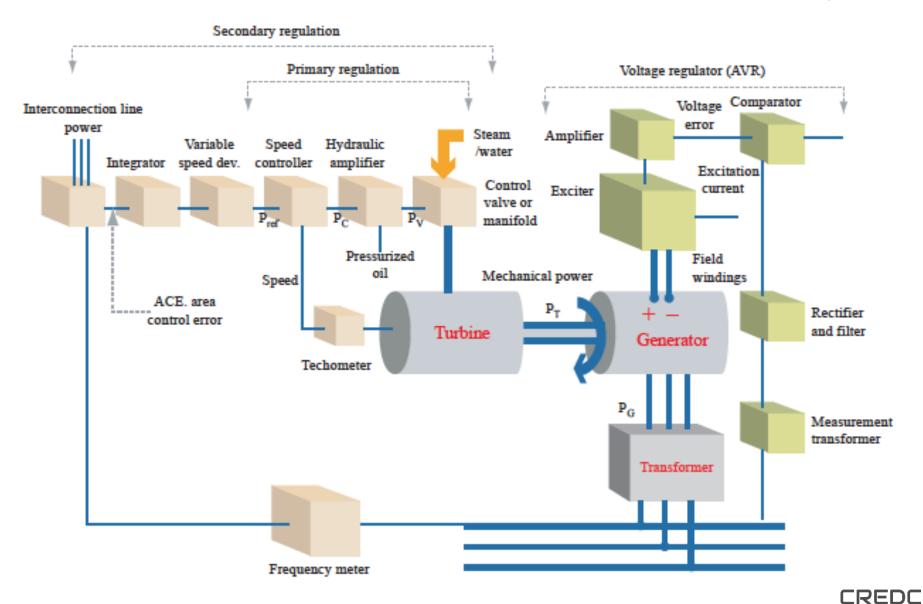
Preventive and Corrective Control Mechanism

Preventive Mechanism

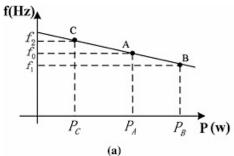

- Forecasting and planning (short term, long term)
- Security analysis against probable failures
- Human Operator

Corrective Mechanism

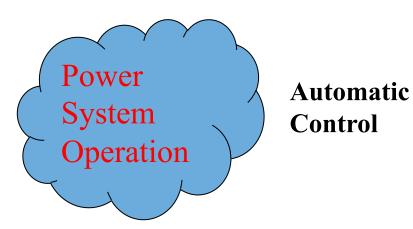
- Protection
- Frequency/ Voltage/ Stability Control
- Remedial Action Schemes/ Special Protection Scheme
- Wide Area Control
- System restoration
- Human Operator



Existing and Evolving Smart Grid Control



Local Control: Generation Control Loop



cred-c.org | 8

(b)

Local Control

Parameter: Voltage, frequency, power flow

Protection Droop Control AVR AGC RAS UFLS

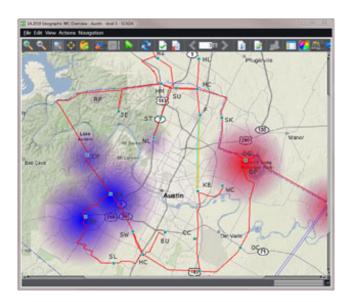
Centralized Control

Centralized Control

Geographical: Area, reliability coordinator, Interconnection Ownership: Investor owned, public owned, IPP, co-op

Parameter:

Voltage,


Situational Awareness

Decision Support Asset: Gen, trans, dist

Regulatory Framework: vertical vs market operation Timeframe: Second, minutes, hours, day, months

frequency, power flow CREDC cred-c.org | 11

Centralized Control

• SCADA

- Sensors (CT/PT, PMU, switch status)
- **RTU, PDC merging units**
- Communication system
- Data archival, historian
- State Estimation
- Control Center Display, organization
- Visualization tool
- Alarm, alerts

Centralized Control

- Decision Support •
 - Real Time
 Operational
 Short Term
 - Short Term Planning
 - Long term Planning

Timeframe: Second, minutes, hours, day, months

- OPF
 - o Unit Commitment
 - o Economic Dispatch
 - Hydro-Thermal
 Scheduling
- Security Analysis
- Load and price forecasting
- Energy Interchange
- Market power analysis

Operator Tasks

- Ensuring the reliable delivery of electricity to customers.
- Manage the power grid from a set of computer consoles within a control center.
- Interact over the phone with field crews, general personnel, substation personnel, and other system operators within their own utility and with neighboring utilities.

Managing an entity (electricity) that is:

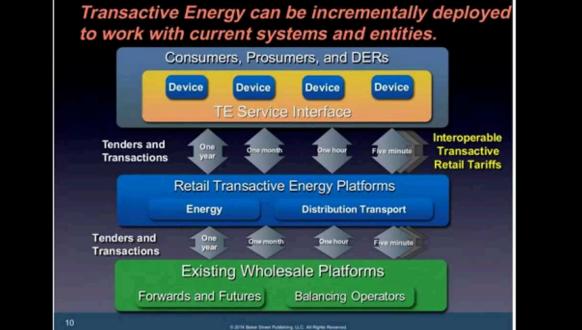
- Invisible
- Travels in the speed of light
- Dangerous/ Fatal

Interchange Operator - monitoring interchange activities between different balancing areas.

Balancing Operator - adequate power generation for expected power demand **Transmission Operator** - transmission switching, monitoring system line loading and voltage conditions.

Reliability Coordinator - stability and reliability of multiple areas, coordinating tasks with multiple entities, and maintain reliability over such areas.

Market Operators - separated from the reliability-oriented. Purchase or sell current and future energy assets to maximize profits. Understand NERC Standards and constraints Renewable Operator


Operator Tasks

- React to alarms, i.e. investigate the cause and validity of the alarms and provide corrective actions.
- Control the station and transmission system voltages and ensure the voltage is within the schedule and specification.
- Facilitates all scheduled preventive maintenance.
- React to other non-forecasted events, i.e. car colliding with an electric pole that either resulted in damage to the pole and equipment or the fire department/police department or the city requesting that we remove from service the cables.
- Coordinate with generator operators when the units are either coming online or offline or when there is a need to adjust their loads.
- Work with engineering when an existing equipment or cable is approaching its capability or exceeded its capability.
- Prepare contingency plans for schedule outage, basically evaluate all the "what if scenarios" and providing corrective action for each scenario.
- Review impact of proposed schedule outage.

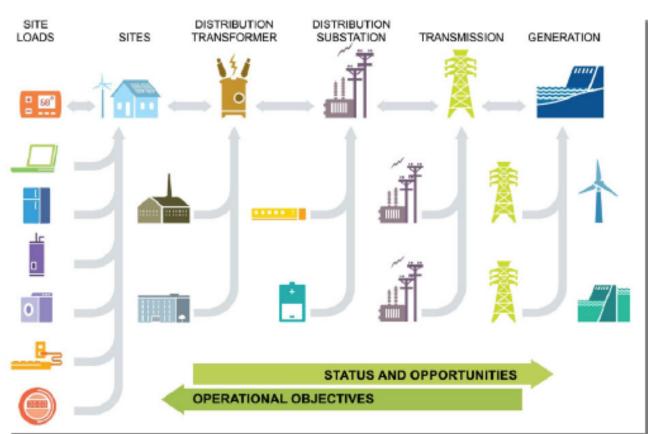
Evolving Control: Transactive Control

- Transactive energy is a means of using economic signals or incentives to engage all the intelligent devices in the power grid from the consumer to the transmission system to get a more optimal allocation of resources and engage demand in ways we haven't been able to before.
- Enabled with the communication concepts we get with the smart grid.

Transactive Control

- Respond to system operation moving from deterministic to stochastic model by fully engaging all resources at all levels
- Use local conditions and global information
- Forecast as a feedback and function as incentive

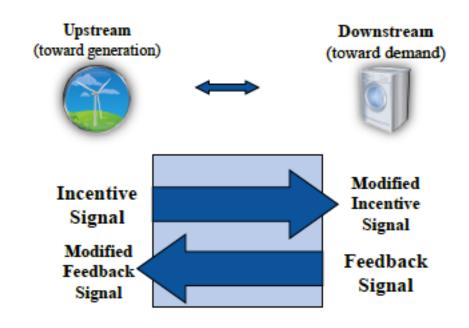
Transactive control & coordination


- Coordinates operation of distributed assets to meet multiple generation, transmission, & distribution objectives
- Manages controllable assets at the distribution level to mitigate load variability & that of supply-side as well

Transactive Control

Operational objectives

- Manage peak demand
- Facilitate renewable resources
- Address constrained resources
- Improve system reliability and efficiency
- Select economical resources (optimize the system)



Aggregation of Power and Signals Occurs Through a Hierarchy of Interfaces

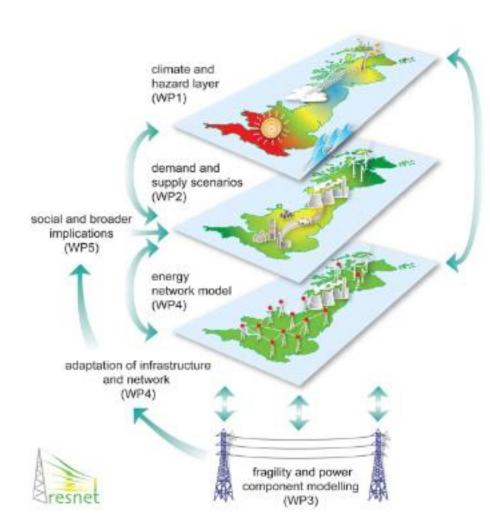
Transactive Control

- ∞ Transactive control is distributed way to respond to grid needs
- Incentive signal can be from big wind farm, transmission constraints, demand charges, imported energy
- ∞ Feedback signal can befrom HVAC thermostat, storage PHEV

Resilient Control

Differences Between Reliability and Resiliency

Resiliency


- Measured in anticipation of some form of threat
- Assessed in extreme disturbance
 - Priority of critical loads is considered
 - Resiliency is an indication of preparedness of a network to withstand or avert damage coming from outside the power system [like weather]
 - No formal metrics

Reliability

- Measure of operational consistency and performance in meeting connected customers load
 - No classification of load is reflected in measurement of reliability
 - Reliability accounts for sustainable power lost due to normal operational or equipment damages or external factors. Momentarily outage ignored.
 - SAIDI, SAIFI, MAIFI, etc

Designing Resilient Control

Weather Impact

- PowerWorld

Power System Analysis

PowerWorld, PSLF

Dynamic Analysis Tool – PSS/E

Control System Modeling

Hypersim

Protection Modeling Tool - CAPE

Cyber Modeling Tool – NS-3, DeterLab

Contingency Modeling Tool

Interfacing

THE FUTURE GRID

Hundreds of millions of active endpoints

controls to manage active ends sensors - actuators - devices

Millions of individual and institutional agents

new economic mechanisms and business models

Future EMS and Control

- Renewables ... forecasting & variability management: Stochastic Control
- Demand Response & EMS integration
- Integration of EMS with DMS
- Growth of phasor analysis & Visualization
- Integrating IED data more intelligently
- Utilizing faster communication
- Synchronous time other than PMU
- Resiliency Metric and Value in Control
- Decentralized and Coordinated
- Fault Tolerant
- Cyber resilient, delay aware

CYBER RESILIENT ENERGY DELIVERY CONSORTIUM

