Leveraging Physics for Security: Micro-PMUs

Anna Scaglione, Arizona State University

Funded by the U.S. Department of Energy and the U.S. Department of Homeland Security | cred-c.org

Contents

- What is phasor (complex envelope)?
- Micro-Phasor Measurement Units (μPMUs)
- Distribution Grid Modeling in Quasi Steady-State Using Phasor Data
- ✤ Situational Awareness through µPMUs
- ✤ Utilizing µPMU Data for Security

Example 1

Real signal (e.g. AC voltage, AC current)

$$s(t) = (1 + 0.01t^2)\cos(0.02\pi t^2)\cos(4\pi t)$$

Phasor signal

Complex signal

Phasor signal

 $\implies \tilde{s}(t) = (1 + 0.05t^2)e^{j0.1\pi t^2}$

$$s(t) = (1 + 0.05t^2)e^{j0.1\pi t^2}\cos(8\pi t)$$

Example 2

Phasor (Complex Envelope)

• Complex envelope: baseband representation of the band-pass signals.

- In Theory:

$$s(t) \xrightarrow{1} s^+(t) = \frac{1}{2}s(t) + \frac{j}{2\pi t} \star s(t) \xrightarrow{2} \tilde{s}(t) = \sqrt{2}s^+(t)e^{-j2\pi f_0 t}$$

shift and scale

s(t) is bandpass

In practice:

W: frequency support of the signal f_0 : signal center frequency Assume that $\frac{W}{2} \le f_0$ $s(t) \stackrel{1}{\longrightarrow} \tilde{s}(t) = \sqrt{2}(s(t)e^{-j2\pi f_0 t}) \star h(t)$

h(t): low-pass filter

Note: $\tilde{s}(t)$ is band-limited \square can be sampled at $2f_0$ Hz.

Micro-Phasor Measurement Units (µPMUs)

- Voltage and current in power system are (band-limited) bandpass signals.
- μPMUs are low-cost and small synchrophasor devices that sample voltage and current with 512*60 Hz rate and extract the complex envelope with 120 Hz.

 μ PMU output: $\mathbf{v}[k] \in \mathbb{C}^{3 \times 1}$, $\mathbf{i}[k] \in \mathbb{C}^{3 \times 1}$

- IEEE C.37 standard filters: P class and M class.
- P class and M class differ because they have two different responses for the Low Pass Filter (LPF). P has high side-lobes → more sensitive to noise but also to transients.

 μPMUs have proprietary filters to handle the different distribution grid environment as opposed to the transmission

0.002° resolution, 0.0002% magnitude, 0.01% Total Vector Error (TVE)!

Micro-Phasor Measurement Units (Cntd.)

Installation at Grizzly Substation, Lawrence Berkeley National Lab, highlighting GPS and modem antennae.

- Sample Measurements: <u>http://mobile.pqube3.com/ https://plot2.upmu.org/</u>
- Designed for harsh distribution grid environment: <u>http://PQube3.com/tough</u>

Distribution Line Model

 Linear Time Invariant (LTI) system → Multi-Input Multi-Output (MIMO) representation also holds for the complex envelopes.

Distribution Line Model (cntd.)

$$i_{ij}(f) = (\mathbf{y}_{ij}^{sh}(f) + \mathbf{y}_{ij}(f))\mathbf{v}_i(f) - \mathbf{y}_{ij}(f)\mathbf{v}_j(f)$$

$$i_{ij}(t) = (\mathbf{y}_{ij}^{sh}(t) + \mathbf{y}_{ij}(t)) * \mathbf{v}_i(t) - \mathbf{y}_{ij}(t) * \mathbf{v}_j(t)$$

In discrete time:

$$\mathbf{i}_{ij}[k] = \sum_{n=0}^{N-1} \overline{\boldsymbol{y}}_{ij}[n] \mathbf{v}_i[k-n] - \sum_{n=0}^{N-1} \boldsymbol{y}_{ij}[n] \mathbf{v}_j[k-n]$$

we assumed that $\boldsymbol{y}_{ij}^{sh}[n]$ and $\boldsymbol{y}_{ij}[n]$ are the samples respectively of $\boldsymbol{y}_{ij}^{sh}(t) \star h(t)$ and $\boldsymbol{y}_{ij}(t) \star h(t)$ and that they have finite support N, and are causal.

Line Model (Quasi steady-state)

- Steady-state never happens in reality [1]
 - 1. load-generation imbalances.
 - 2. active power demand interactions.
 - 3. large generators inertia.
 - 4. automatic speed controllers of the generators.

What is the effect on μ PMU output??

$$\mathbf{v}_i[k] = \hat{\mathbf{v}}_i[k]e^{j\beta_k k}, \ \mathbf{i}_{ij}[k] = \hat{\mathbf{i}}_{ij}[k]e^{j\beta_k k}$$

 β_k is the drift in the frequency.

Line Model (Quasi steady-state cntd.)

Main assumption: $\hat{\mathbf{v}}_i[k-n] \approx \hat{\mathbf{v}}_i[k]$ and $\beta_{k-n} \approx \beta_k$ for $n = 0, \dots, N-1$

$$\mathbf{i}_{ij}[k] \approx \left(\sum_{n=0}^{N-1} \overline{\boldsymbol{y}}_{ij}[n] e^{-j\beta_k n}\right) \mathbf{v}_i[k] - \left(\sum_{n=0}^{N-1} \boldsymbol{y}_{ij}[n] e^{-j\beta_k n}\right) \mathbf{v}_j[k]$$

$$\overline{\boldsymbol{Y}}_{ij}(f_0,\beta_k) \triangleq T\overline{\boldsymbol{Y}}_{ij}\left(f_0 + \frac{\beta_k}{2\pi T}\right) H\left(\frac{\beta_k}{2\pi T}\right),$$

$$\boldsymbol{Y}_{ij}(f_0,\beta_k) \triangleq T\boldsymbol{Y}_{ij}\left(f_0 + \frac{\beta_k}{2\pi T}\right) H\left(\frac{\beta_k}{2\pi T}\right),$$

$$\mathbf{i}_{ij}[k] = \overline{\mathbf{Y}}_{ij}(f_0, \beta_k) \mathbf{v}_i[k] - \mathbf{Y}_{ij}(f_0, \beta_k) \mathbf{v}_j[k]$$

modulated admittance parameters.

since
$$\frac{1}{T} \sum_{n=0}^{N-1} \boldsymbol{y}_{ij}[n] e^{-j2\pi f nT} = \boldsymbol{Y}_{ij}(f_0 + f)H(f)$$
 where $T = \frac{1}{120}$

Situational Awareness

• Significantly more information vs event-triggered DSCADA.

- Two voltage sags were captured on April. 16, 2015 between 10:20 AM 10:21 AM PDT.
- The voltage sags can be seen in all the µPMUs → 2 separate distribution circuits impacted.
- It led to loss of some loads.

How to Utilize µPMU Data for Security?

- Deployment of µPMUs significantly increases the detection and classification capabilities of distribution operators.
- Many cyber-attacks targeting the physical layer leave footprints in the μPMU data.
- Detected µPMU data anomalies + knowledge of grid operation

How to leverage Physics?

- Collect real-time measured data from micro phasor measurement units (µPMUs) in the power distribution grid that reflect the physical condition of the system.
- Collect cyber network traffic to and from points in the distribution grid using Bro Intrusion Detection System.
- Using models of distribution grid state, analyze the distribution grid for unsafe operation.
- When anomalies are found, compare deviations from μPMUs with SCADA traffic to determine if cyber event is at cause.

Data Analysis

 μ PMU data functions of interest to be inspected for anomalies are:

- \checkmark Voltage magnitude
- ✓ Frequency
- ✓ Current magnitude
- \checkmark Active power
- \checkmark Reactive power
- ✓ Governing laws of Physics <

Validity of quasi steady-state regime using single or multiple µPMU data.

Source impedance Thevenin changes.

Example: Detecting Reconnaissance Attacks

- Attackers are likely to test their ability to control devices/switches prior to attack
- Ukraine attack of December 23rd 2015
 - Attackers appeared to have gained access more than 6 months prior to attack¹
 - Believed that they tested their capabilities prior to deployment.
- Can we detect these tests and inform operators?
 - Passively monitor and learn networks steady-state behavior
 - Once change has been detected notify operator
 - Operator confirms whether change was intentional or potential attack

Use Case: Detecting Operation of Bus Tie Switch

- If we are sitting outside the substation can we detect a change of the bus-tie switch?
- Calculation of Thevenin Equivalent Impedance of grid as seen from μPMU can detect such a change - Inform operators of change in status of bus-tie switch.

CYBER RESILIENT ENERGY DELIVERY CONSORTIUM

http://cred-c.org

@credcresearch

facebook.com/credcresearch/