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Example 1
Real signal (e.g. AC voltage, AC current)

s(t) = (1 4+ 0.01t%) cos(0.027t?) cos(4rt)

Phasor signal

5(t) = (1 4 0.01t%) cos(0.027t?)
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Example 2

Complex signal

Phasor signal

s(t) = (1 + O.O5t2)ej0'17rt2 cos(8wt) W) 3(t) = (1 + 0_05t2)€j0-17rt2
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Phasor (Complex Envelope)

e Complex envelope: baseband representation of the band-pass signals.

— InTheory: analytic signal complex envelope
1 ' 3 -
s(t) mm st (t) = Ss(t)+ ﬁ xs(t) mmy  §(t) = /2sT(t)e I Sot,

shift and scale
s(t) is bandpass
— In practice:

W frequency support of the signal fo: signal center frequency
1

W ~ —92m
Assume that = —- < f; s(t) mmm) 3(t) = V2(s(t)e 2™ 0t) x h(t)
h(t): low-pass filter
Note :  §(t) is band-limited mmmm®) can be sampled at 2fy Hz. 5



Micro-Phasor Measurement Units (uUPMUs)

e Voltage and current in power system are (band-limited) bandpass signals.

 LPMUs are low-cost and small synchrophasor devices that sample voltage and
current with 512*60 Hz rate and extract the complex envelope with 120 Hz.

Phasor
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uPMU output: v[k] € C3*, i[k] e C**!



e |EEE C.37 standard filters: P class and M class.
e P class and M class differ because they have two different responses for the Low Pass

Filter (LPF). P has high side-lobes = more sensitive to noise but also to transients.

P class Impulse Response P class Frequency Response
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e uPMUs have proprietary filters to handle the different distribution grid environment

as opposed to the transmission

0.002° resolution, 0.0002% magnitude, 0.01% Total Vector Error (TVE)!



Micro-Phasor Measurement Units (Cntd.)

Installation at Grizzly Substation, Lawrence Berkeley National
Lab, highlighting GPS and modem antennae.

e Sample Measurements: http://mobile.pqube3.com/ https://plot2.upmu.org/
e Designed for harsh distribution grid environment: http://PQube3.com/tough



http://mobile.pqube3.com/
https://plot2.upmu.org/
http://pqube3.com/tough
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Distribution Line Model
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e Linear Time Invariant (LTI) system =2 Multi-Input Multi-Output (MIMO)
representation also holds for the complex envelopes.



Distribution Line Model (cntd.)

) = (yi () + i (N))vi(f) — yi; (F)v; (f)
i;(t) = (y (t) T Y (t)) * vi(t) — Yij (t) * v;(1)

yfjh(t) line shunt parameter impulse response ¥;;(t): line series parameter impulse response
y%’"“(f) YH(f A+ fo)s vis(F) £ Yo (f + fo)

Yii(f) 2Y()+Y5(f) 15 (f) =i ()vi(f) — yi; (f)v;(f)
VoD 2y +yalf) Y ) g () vilt) — gy (1) * v (1)
) = yij

yzy (t 7 ( ) + yij (t)
o ’)’L] Z yzg VJ o ?’L}

In discrete time: N—1
iy [k] =
we assumed that y$/'[n] and y,;[n] are the samples respectively of y$(t) * h(t)
and y,;(t) x h(t) and that they have finite support IV, and are causal. 1
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Line Model (Quasi steady-state)

e Steady-state never happens in reality [1]
1. load-generation imbalances.
2. active power demand interactions.
3. large generators inertia.
4. automatic speed controllers of the generators. unwrapped angle of voltage phasor

30 T |

25

What is the effect on uPMU output??
vilk] = Vilk]e?PF, iy k] = g [k] e’
B is the drift in the frequency.
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1. Phadke, Arun G., and John Samuel Thorp. Synchronized phasor measurements and their applications. Springer Science & Business Media, 2008.



Line Model (Quasi steady-state cntd.)

Main assumption: v;|k —n| ~ V;lk] and Bx_, ~ B forn=0,...,N — 1

‘ i k| ~ (i Yij [n]e_jﬁkn) vilk] — (z—: Yij [n]e_jﬁkn) v,k

Yii(fo.Br) 2 T?Z.j( fot zi—kT) H(ﬁ_kT) ii;[k) = Yi;(fo, Br)vilk] — Yij(fo, Br)v;K]
) H(ﬁ)-’ N

21T modulated admittance parameters.

Yii(fo,Bk) = TYz'j(fo+

since & S0 Yy [nle 2T =Yy (fo + f)H(f) where T = &

13



Situational Awareness
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e Significantly more information vs event-triggered DSCADA.
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* Two voltage sags were captured on April. 16, 2015
between 10:20 AM —10:21 AM PDT.

* The voltage sags can be seen in all the uPMUs > 2
separate distribution circuits impacted.

* |tled to loss of some loads.
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How to Utilize uPMU Data for Security?

e Deployment of uPMUs significantly increases the detection and
classification capabilities of distribution operators.

- Many cyber-attacks targeting the physical layer leave footprints in the
uPMU data. @

e Detected uPMU data anomalies + knowledge of grid operation
) grid security status hypotheses testing.

\




How to leverage Physics?

Collect real-time measured data from micro phasor
measurement units (LPMUs) in the power distribution
grid that reflect the physical condition of the system.

Collect cyber network traffic to and from points in the
distribution grid using Bro Intrusion Detection System.

Physical
System

Using models of distribution grid state, analyze the
distribution grid for unsafe operation.

Data &
commands

When anomalies are found, compare deviations from
UPMUs with SCADA traffic to determine if cyber event is
at cause.

|G

possible?
e Ve safe?

§ Physical
System .,‘

'_‘ Modelj__j‘

'-......\______,

£

State

Hybrid Physical
Information
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Data Analysis

LPMU data functions of interest to be inspected for anomalies are:

v/ Voltage magnitude
V' Frequency

v/ Current magnitude
V' Active power

v/ Reactive power

Validity of quasi steady-state regime
v/ Governing laws of Physics using single or multiple uPMU data.

Source impedance Thevenin changes.



Example: Detecting Reconnaissance Attacks

e Attackers are likely to test their ability to control devices/switches prior to attack

e Ukraine attack of December 23rd 2015

e Attackers appeared to have gained access more than 6 months prior to attack!

* Believed that they tested their capabilities prior to deployment.

 (Can we detect these tests and inform operators?

e Passively monitor and learn networks steady-state behavior
 Once change has been detected notify operator

 QOperator confirms whether change was intentional or potential attack



Use Case: Detecting Operation of Bus Tie Switch

External

Grid
AN AN AT '

Substation | ' Substation I Switch |
: : Closed |
| |

- e -

External
Grid

e |f we are sitting outside the substation can we detect a change of the bus-tie switch?

e Calculation of Thevenin Equivalent Impedance of grid as seen from pPMU can detect
such a change - Inform operators of change in status of bus-tie switch.

20
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