Multi-Receiver GPS-based Direct Time Estimation for PMUs

Sriramya Bhamidipati, Yuting Ng and Grace Xingxin Gao

University of Illinois at Urbana-Champaign

CREDC All Hands Meeting | Oct 14 2016

University of Illinois at Urbana-Champaign

Motivation

- Supply and demand of electricity should be balanced to maintain power grid stability
- Power grid vulnerable to
 - **External attacks**
 - Natural disasters
 - Man-made errors

Massive power blackouts

people affected people affected

100 million

50 million

87 million people affected

670 million people affected

Goals of US power community

- Synchronized phasor measurements
- Reliable communication network
- Real-time information monitoring
- Automation of the power grid
- Improving the security margins

Development of reliable and robust Smart Power Grid

Goals of US power community

- Synchronized phasor measurements
- Reliable communication network
- Real-time information monitoring
- Automation of the power grid
- Improving the security margins

In use currently Supervisory Control and Data Acquisition (SCADA)

Goals of US power community

- Synchronized phasor measurements
- Reliable communication network
- Real-time information monitoring
- Automation of the power grid
- Improving the security margins

In use currently Supervisory Control and Data Acquisition (SCADA)

Switching to Phasor Measurement Units (PMUs)

Phasor Measurement Unit (PMU)

- Highly synchronized measurements
- PMU measures current and voltage in power grid

GPS Timing for PMUs

Advantages

Global coverage Freely available

 μs -level accurate time

GPS Conventional Approach

- Inputs
 - Center: 3D satellite position
 - Radius: Pseudoranges
- Unknowns to be estimated:
 - **3D** position (x, y, z)
- Methodology
 - Trilateration technique

Trilateration technique

GPS Conventional Approach

- Inputs
 - Center: 3D satellite position
 - Radius: Pseudoranges
- Unknowns to be estimated:
 - **3D position** (x, y, z)
 - Clock bias $(c\delta t)$
- Methodology
 - Trilateration technique
 - Minimum 4 satellites required

Trilateration technique

GPS Timing for PMUs

Advantages	Disadvantages	
Global coverage	Unencrypted structure	
Freely available	Low signal power	
μs -level accurate time	Vulnerable to attacks	

GPS Timing Attacks

Jamming: Makes timing unavailable for PMUs Meaconing: Mislead PMU with wrong time

Objectives

Propose a robust GPS time transfer technique to:

- Mitigate the effect of external timing attacks
- Improve tolerance against noise and interference

Outline

- **Motivation and Objectives**
- **GPS** Conventional approach
- Multi-Receiver Direct Time Estimation (MRDTE)
- Experimental setup
- **Results and Analysis**
- **Ongoing Work**
- Summary

Power substation, Sidney, IL

- Multiple receivers
 - Geographical diversity

Power substation, Sidney, IL

- Multiple receivers
 - Geographical diversity
- Position Aiding
 - Static receiver location

Power substation, Sidney, IL

- Multiple receivers
 - Geographical diversity
- Position Aiding
 - Static receiver location
- Direct Time Estimation (DTE)
 - Works with timing parameters
 - No intermediate pseudoranges

Power substation, Sidney, IL

- Multiple receivers
 - Geographical diversity
- Position Aiding
 - Static receiver location
- Direct Time Estimation (DTE)
 - Works with timing parameters
 - No intermediate pseudoranges

Triggered by common external Power substation, Sidney, IL clock

Reduction in no. of unknowns from 8 (x, y, z, $c\delta t$, \dot{x} , \dot{y} , \dot{z} , $c\delta \dot{t}$) × # of receivers to 2 ($c\delta t$, $c\delta \dot{t}$)

MRDTE: Architecture

University of Illinois at Urbana-Champaign

MRDTE: Architecture

Direct Time Estimation

Combined satellite signal replica

Direct Time Estimation

Direct Time Estimation

DTE: Vector Correlation

Code residual ($\Delta \phi_{code}$), Carrier residual (Δf_{carr}) independently estimated in two parallel threads

DTE: Vector Correlation Continued

 Non-coherent summation across satellites to track code phase and carrier frequency.

DTE: Max Likelihood Estimation

$$corr_{j} = corr\left(R, \sum_{i=1}^{N} Y^{i}(c\delta t_{j}, c\delta \dot{t}_{j})\right)$$

 $T_{MLE} = \max_{j=1,..,P} corr_j$ $= [c\delta t_{MLE}, c\delta \dot{t}_{MLE}]$

Where,

- P= number of grid points
- R= incoming raw GPS signal

 $Y^i = i^{th}$ satellite signal replica

DTE: Robustness

Strong signal environment

Across the satellites

Weak signal environment

Direct Time Estimation more robust than Scalar Tracking

MRDTE: Architecture

MRDTE Filter: Kalman Filter

• Prediction model:

 $\hat{T}_{t+1,k} = \begin{bmatrix} 1 & \Delta T \\ 0 & 1 \end{bmatrix} T_{t,overall}$

• State vector
$$T_{t,k} = \begin{bmatrix} c \delta t_k \\ c \delta \dot{t_k} \end{bmatrix}$$

 Error covariance matrix is calculated by processing the last 19 measurement errors

MRDTE Filter: Overall Filter

- Overall filter to obtain the final corrected clock state *T_{t,overall}*
- Measurement error matrix

$$e_{t,overall} = \begin{bmatrix} T_{t,1} - \hat{T}_{t,overall} \\ \vdots \\ T_{t,k} - \hat{T}_{t,overall} \\ T_{t,L} - \hat{T}_{t,overall} \end{bmatrix}$$

Where
$$T_{t,k} = \begin{bmatrix} c \delta t_k \\ c \delta \dot{t_k} \end{bmatrix} k = 1..L$$

Outline

- **Motivation and Objectives**
- **GPS** Conventional approach
- Multi-Receiver Direct Time Estimation (MRDTE)
- Experimental setup
- **Results and Analysis**
- **Ongoing Work**
- Summary

Experimental Setup

- 4 receivers on the rooftop of Talbot Lab, Urbana, Illinois
- Placed along the corners of square with diagonal length 10m
- Mimic the setup of a original power substation

Experimental Setup: Continued

- 4 USRP's used for collecting GPS signals
- All the receivers triggered by a common external clock -Chip Scale Atomic Clock (CSAC)
- For processing the data: pyGNSS - object oriented python platform developed by our lab

Outline

- **Motivation and Objectives**
- **GPS** Conventional approach
- Multi-Receiver Direct Time Estimation (MRDTE)
- **Experimental Setup**
- **Results and Analysis**
- **Ongoing Work**
- Summary

Jamming: Carrier Frequency

MRDTE (loses track at 17dB added jamming) offers **5dB** more noise tolerance than Scalar Tracking (loses track at 12dB added jamming)

Jamming: Code Frequency

MRDTE offers better convergence and smaller variance to external noise interference

Jamming: Different Levels

At 12dB jamming, MRDTE maintains a residual in clock bias of < 100ns and clock drift of < 1.5ns/s

Jamming: Single vs Multiple

Multiple receivers show smaller variance in the clock bias as compared to single receiver

Meaconing: Carrier Frequency

Scalar tracking is operational until **2dB** of added meaconed signal while MRDTE is operational till **5dB**

Outline

- **Motivation and Objectives**
- **GPS** Conventional approach
- Multi-Receiver Direct Time Estimation (MRDTE)
- **Experimental Setup**
- **Results and Analysis**
- **Ongoing Work**
- Summary

Ongoing Work

- Objective:
 - Comparison of the performance robustness of the MRDTE and Scalar tracking using RTDS setup

RTDS stability analyzed

Ongoing Work

 Raw GPS signals are supplied to SEL-2488 (external clock) to trigger virtual PMU and the hardware PMU is triggered using our MRDTE algorithm.

Work done till now

- Generated the IRIG-B000 timing pulse: Input to PMU
- Created a voltage shifter to convert the transmitted USRP-LFTX 0-1v IRIG-B signal to 0-5v IRIG-B000 signal

Upcoming Work

• Timing attacks are simulated and added to the raw GPS signals being supplied to the SEL-2488 and USRP-LFTX.

Summary

- Proposed a novel Multi-Receiver Direct Time Estimation (MRDTE) algorithm
- Verified the increased noise tolerance and successful mitigation of meaconing attack

Timing Attack	MRDTE	Scalar
Jamming	17dB	12dB
Meaconing	5dB	2dB

 Work being done in evaluating the impact of the MRDTE on power grid

Thank You

Special Thanks to: Prosper and Jeremy for helping with the experimental setup of power grid and in carrying out the evaluations

Acknowledgements: This material is based upon work supported by the Department of Energy under Award Number DE-OE000078