

Robust and Scalable Security Monitoring and Compliance Management for Dynamic EDS

Carlos Rubio-Medrano, Josephine Lamp, Ziming Zhao and Gail-Joon Ahn

Background

- The Center for Cybersecurity and Digital Forensics at ASU:
 - Identity management and access control,
 - Formal models for computer security,
 - Network and distributed systems security including web, mobile, SDN and cloud computing,
 - Vulnerability, risk assessment and cyber crime analysis
 - Digital Forensics

CENTER FOR

CYBERSECURITY & DIGITAL FORENSICS

ASU-CDF Team

Carlos Rubio-Medrano

Josephine Lamp

Dr. Ziming Zhao

Research Challenges

- Security compliance in EDS gets complicated due to:
 - The distributed, high-interconnected and heterogeneous nature of EDS, e.g., monitoring software, meters, etc.
 - Continuous reconfigurations due to on-demand changes
 - The existence of multiple, large, dense (and sometimes conflicting) documents on security compliance
 - E.g., existence of subjective interpretations, non-standard implementations, and breakdowns among stakeholders

Challenges for Compliance Management

- Compliance as seen by CREDC participants*:
 - Requires considerable organizational effort
 - Does not necessarily advance security: seen mostly as a legal exercise
 - Varies significantly from state to state: adopting standards may not be straightforward
 - Must be addressed since design/installation time

11/18/2016

* Highlights from Session on Compliance at CREDC Annual Industry Workshop, March 2016

Proposed Solution

- We must assess if particular EDS implementations comply with well-defined security requirements
 - Filling in the gap between high-level requirements and real-world practical implementations
- We propose a framework for the verification, validation and attestation (VV&A) of EDS that is:
 - Automated, well-defined, and configurable (theoretically-justifiable)
 - Systematic (repeatable to validate)
 - Practical (deployable to organizations)
 - Non-intrusive (minor overhead/reconfiguration as possible)

11/18/2016

6

A Security M&C Framework for EDS

- I. We gather the most relevant documents on best practices for EDS
- 2. Next, we obtain a description of such best practices by leveraging ontologies
- 3. We then introduce software-based modules for automated monitoring and compliance analysis
- 4. Data from EDS infrastructure (5) is collected and forwarded for further processing

A Security M&C Framework for EDS (II)

A Security M&C Framework for EDS (III)

- Leveraging our approach involves:
 - Creating dedicated compliance workflows based on analyzing ontology-based requirements

 Collecting evidence on security-relevant data directly from EDS infrastructure

 Creating customized processing modules implementing such workflows

9

A Security M&C Framework for EDS (IV)

- Our proposed framework is intended to:
 - Encourage the rigorous analysis of security requirements by leveraging ontologies
 - Continuously monitor the security of EDS infrastructure by leveraging emerging technologies, e.g., software-defined networks (SDN)
 - Automatically perform security compliance checks and management on EDS deployments
 - Promote the development of objective, traceable, justifiable and repeatable security metrics and measures for EDS

10

A Security Framework for EDS: Requirements

Ontology Representation: Onto-ArcRE*

*Lee SW and Gandhi RA. *Ontology-based active requirements engineering framework*. APSEC'05. 2005. IEEE.

- Communication channels must be secured:
 - Security Principles: Integrity¹
 - Security Threat: System Tampering¹
 - Attack Vector: Network Communications^{1,2}
 - Attacks: Intercept, Man in the Middle, Masquerade³
 - Security Features: Protected Channel¹
 - Security Techniques: Secure Sockets Layer (SSL)⁴
 - EDS Infrastructure: MTU, IED, RTU⁴
 - I) Cybersecurity Procurement Language for Energy Delivery Systems

- 2) NERC CIP-005
- 3) IEC62351

4) NIST SP 800-82

IEC62351

Repudiation

11/18/2016

17

SPARQL Query – Security Principle

SELECT ?secTech ?prnpl WHERE

eds:protectsIntegrity
rdfs:domain ?secTech ;

rdfs:range ?prnpl.

Principle
Integrity

{

SPARQL Query – Documentation

SELECT ?secTech ?doc WHERE

eds:specifiedBy
rdfs:domain ?secTech ;

rdfs:range ?doc.

SecurityTechnique	Principle
Access Control	CyberProc Lang
Credentials	NIST800-82
DMZ	CyberProc Lang
Encryption	NERC_CIP
Firewall	IEC62351
NetworkMonitoring	IEC62351
PKI	NIST800-82
SSL	NIST800-82

SPARQL Query – Properties

SELECT ?attack ?property ?sysComp WHERE

?property rdfs:domain+ ?attack ;
 rdfs:range+ ?sysComp .
eds:Attack (^rdfs:domain/rdfs:range)* ?attack .
?attack (^rdfs:domain/rdfs:range)* ?sysComp .

SPARQL Query - Properties

Domain	Property	Range
ControlBypass	targets	MTU
PrivilegeEscalation	targets	AccessControlMech
ManInTheMiddle	targets	RTU
Intercept	targets	NetworkComm
Masquerade	targets	IED
TrafficAnalysis	targets	NetworkTraffic
Repudiation	targets	Software
Virus	targets	Application

CENTER FOR

Ontology Representation: Onto-ArcRE*

Universe of Discourse

*Lee SW and Gandhi RA. Ontology-based active requirements engineering framework. CYBERSECURITY & DIGITAL FORENSICS APSEC'05. 2005. IEEE.

11/18/2016

22

Ontology Representation: Benefits

 Well-defined: provide an unambiguous representation of requirements knowledge depicting common vulnerabilities and exposures (CVEs) * synthesized cohesively

• Multi-dimensional: represents multiple dimensions and viewpoints, i.e., relevant information for engineers vs vendors

• Link analysis: identifies interdependencies, missing and conflicting information among diverse knowledge sources

A Security Framework for EDS: SDN

Leveraging SDN for Security Monitoring

EDS Control Software (SCADA)

SDN-Controlled Network

SDN Example

- PLCs and IEDs must not talk to each other directly:
 - Security Threat: Inter-device Network Communication²
 - Attacks: Recipe or Instruction Change, System Configuration Modification, False Information Distribution^{1,2}
 - Security Features: Network Security Zone¹
 - Security Techniques: Device Network Communication
 Segregation²
 - EDS Infrastructure: ICS Control Network, IED, PLC²

Cybersecurity Procurement Language for Energy Delivery Systems
 NIST SP 800-82

Ontology Representation: SDN Example

Leveraging SDN for Monitoring Traffic

Leveraging SDN for Monitoring Traffic (II)

Leveraging SDN for Monitoring Traffic (III)

Leveraging SDN for Monitoring Traffic (IV)

Leveraging SDN for Monitoring Traffic (V)

Leveraging SDN for Monitoring Traffic (VI)

Leveraging SDN for Monitoring Traffic (VII)

Leveraging SDN for Monitoring Traffic (VIII)

Security Monitoring Using SDN

- Benefits of using an SDN-based solution:
 - Customizable: new SDN applications may be added
 - Non-Intrusive: no need to modify existing EDS infrastructure, e.g., SCADA, physical meters, etc.
 - Scalable: new network nodes should be accommodated
 - Platform Independent: may support different components and configurations

Ongoing Work

- We are currently working on the following:
 - Ontology-based engine: several documents parsed, 1324 logical axioms, 425 classes, 214 properties, 441 subclass relationships
 - SDN infrastructure developed, working on testing and refinement
 - Supporting backbone framework in progress, as well as in a proof-of-concept module depicting automated monitoring for compliance

Industry Involvement

- We are actively looking for industry partners for:
 - Getting input/feedback on current security compliance requirements and best practices
 - Relevant documents, conflicts, use cases, experience, etc.
 - Implementing a proof-of-concept software module leveraging a realistic EDS scenario:
 - Defining a customized workflow based on requirements
 - Defining data that can be collected using our SDN approach

Conclusions

- Future Work:
 - Support for friendly visualization techniques, e.g., graphical user interfaces (GUIs) for ontology queries in SPARQL
 - Support for the rigorous study of security risks and assessments by means of the simulation of attacks
- Broader Impact:
 - Improvement of the public's confidence on missioncritical EDS infrastructure

Contact

- •Thank you all for listening!
- CDF Website: <u>https://globalsecurity.asu.edu/cdf</u>
- Carlos Rubio-Medrano: crubiome@asu.edu

