
The Seven Turrets of Babel:

Data Format is Code's Destiny:
Security Anti-Patterns Of

Protocol Design.
Sergey Bratus

with
Falcon Momot
Sven Hallberg

Meredith L. Patterson

Economics
• Pen test, code audit "2+2": 2 persons, 2 weeks

• Attackers have "infinite" time to find just 1 vuln

• Proofs of exploitability take weeks, even when
weakness is evident

• Confirming departures from safe design
practices is more helpful than proof of exploitability

A set of CWEs to say: 

- this parser is trouble
- this data format is trouble
- this protocol spec is trouble

"A bad feeling is not a finding"

A bad feeling is not a finding

Our program
• Give the "bad feeling" a solid theory

• Why parsers/protocols that look like trouble are trouble

• Enhance CWE-398 "Indicator of poor code quality"

• Give auditors a weapon against anti-patterns in parser
code / data format design:

• Enable LangSec CWE findings, with a taxonomy

• Show actual mechanisms behind CWE-20 "Improper
input validation" etc.

2009$CWE/SANS$Top25

2010$CWE/SANS$Top25

2011$CWE/SANS$Top25
(and$s6ll$current)$

Existing CWEs: 20, 78, 79, 89, ...

What's wrong with existing CWEs?

• "Improper input neutralization" in shell command,
SQL, and web contexts (CWE-{78,79,89})

• Mechanism, not root cause

• Wrong level of abstraction. Consequence of bad
design, not description of one.

• Almost the proof of the vuln (expensive to find)

What is input validation and
what good is it?

• Everyone is telling everyone else to "validate inputs
for security". But what does it mean?

• Implication: "valid" == "safe".

• Not all ideas of "valid" are helpful: compiling &
running valid C on your system is not safe!

• "Safe" means predictably not causing unexpected
operations

Security: "valid" must mean
predictable, or it's useless

• Being valid should be a judgment about behavior
of inputs on the rest of the program

• Note: CWE's "neutralization" implies input is  
 active, must be made "inert" to be safe

• "Every input is a program". Judging programs is
very hard, unless they are very simple.

(Valid => predictable) ||
useless

• Make the judgment as simple as possible

• i.e., checkable by code that can't run away &
can be verified

• In general, "non-trivial" properties of Turing-
complete programs can't be verified

• but programs for simpler automata can be
automatically verified

"Data format is code's destiny"

"Everything is an interpreter (=parser)"

"Every sufficiently complex input processor  
is indistinguishable from a VM  
running inputs as bytecode"

Data  
format

Parser 
Structure

"trouble"/ 
weakness

What is "trouble"?

P { Q } R ⊇ P' { Q' } R' ⊇ P'' { Q'' } R'' ⊇ ...

Your program is a CPU/VM for adversary-controlled inputs

You must prevent run-away computation (a.k.a. exploit)

You must formulate & verify assumptions

Even strict C.A.R. Hoare-style verification is brittle if any  
assumptions are violated

"Babel", a CWE
"Failure to communicate
assumptions to interacting
modules"

P {M1 } R

P' {M2} R'

P'' {M3} R''

P''' {M4} R'''

"Computation is not stable w.r.t. proofs"

Is the P { Q } R chain like this: or like this?

"Recognizer Pattern"

Input&

Processing:&&
only&well3typed&

objects,&
no&raw&inputs&&

&

Recognizer&
for&input&
language&

Language
grammar&
Spec&

Reject&&
invalid&
inputs& Only&valid/expected&inputs,&

semanCc&acCons&past&this&line&

Anti-patterns
1. Shotgun parsing

2. Input language > DCF

3. Non-minimalistic input-
handing

4. Parser differentials

5. Incomplete specification

6. Overloaded fields

7. Permissive processing of
invalid input

Christopher Ulrich, "Alchemy"

1. "Shotgun parser"
• Parsing and input-validating code is mixed with

and spread across processing code

• Input checks are scattered throughout the program

• No clear boundary after which the input can be
considered fully checked & safe to operate on

• It's unclear from code which properties are being
checked & which have been checked

Heartbleed is a "shotgun parser" 
bug

SSL3_RECORD

HeartbeatMessage

hbtype payload

Where OpenSSL's parser went wrong

Premature processing of
unvalidated input

DNP3-SA
• Parts of the DNP3 payload are crypto-signed

• 21 of 34 function codes can be authenticated (=signed)

• Parsing of payloads can be deferred until authentication

• Hostile inputs problem solved? Not by far.

• signed & unsigned elements are mixed; no easy skipping

• state affected by both signed & unsigned messages

• more complexity, not less

• multiple syntax ambiguities

2. Input languages more
powerful than DCF

• "Validating input" is judging what effect it will have on code

• "Is it safe to process?" == "Will it cause unexpected
computation on my program?"

• Make the judgment as simple as possible:  
"regular or context-free, syntactically valid == safe"

• Comp. power of recognizer rises with language's syntactic
complexity (Chomsky hierarchy)

• Rice's theorem, halting problem: you can't judge effects of
Turing-complete inputs. Don't even try!

Ethereum DAO disaster
"To find out  
 what it does, 
 you need  
 to run it"

Recursion
is trouble

Project Robus: Master Serial Killer, Crain & Sistrunk, S4x14

Project Robus: Master Serial Killer, Crain & Sistrunk, S4x14

Project Robus: Master Serial Killer, Crain & Sistrunk, S4x14

Project Robus: Master Serial Killer, Crain & Sistrunk, S4x14

Project Robus: Master Serial Killer, Crain & Sistrunk, S4x14

3. Non-minimalistic input handling

• Input-handling code should do nothing more than
consume input, validate it (correctly) & deserialize it

• Use the exact complexity needed to validate &
create well-typed objects

• Reflection, evaluation, etc. don't belong in input-
handling code (even if "sanitized")

• Any extra computational power exposed is privilege
given away to attacker

CVE-2015-1427
"Sanitized" Groovy scripts in inputs +  

JVM Reflection = Pwnage

"Ruby off Rails"
• "Why parse if we can eval(user_input)?"

• Oh so many. Joernchen of Phenoelit Phrack 69:12,
Egor Homakov ("Don't let YAML.load close to any
user input"), ...

• CVE-2016-6317, "Mitigate by casting the
parameter to a string before passing it to Active
Record"

"Shellshock" CVE-2014-6271 
parse_and_execute(CGI_input)

CVE-2014-6271, CVE-2014-6277, CVE-2014-6278, CVE-2014-7169,
CVE-2014-7186, CVE-2014-7187

"Crouching interpreter, hidden eval"

Rich interpreter

Intended
function

Input
Some
kind
of

ad-hoc
black-

list
filter

4. Parser differentials
• Parsers in a distributed system disagree about what a

message is

• X.509 /ASN.1 "PKI Layer cake": 
CA sees (and signs) a different CN in CSR than client in
the signed cert

• Android Master Key bugs: Java package verifier sees
different package structure than C++ installer (~signed vs
unsigned ints in zipped stream)

• Also, an instance of overly complex input format  
(must deal with complexity of unzip before validating!)

5. Incomplete specification
• Leads to parser differentials (X.509 redux)

• Without clear assumptions, the C.A.R. Hoare's  
P {Q} R chain of assumptions & checks breaks

• What is "valid" input? What's to be rejected?

• Doomed if more than one module (or programmer) 
is involved

• Cf.: OpenSSL CVE-2016-0703, LibNSS CVE-2009-2404, ...

6. Overloaded fields

• Magic values cannot be consistently validated  
 
 - What language grammar includes them?  
 - What type system captures them?

• E.g.: CVE-2015-7871: NTP's crypto key field  
 overloaded to mean "auth not required"

7. Permissive processing of
invalid inputs

• Reject, don't "fix" invalid input. You cannot guarantee its
computational behavior on your system.

• famous example: IE8 anti-XSS created XSS vulns

• PDF rewriting by Acrobat makes it hard to judge PDFs

• Your program's attempts to "fix" invalid input will  
become a part of the attacker's exploit machine

• Postel's Robustness principle is trouble!

• Rewriting is a powerful computation model!  
Don't give the attacker any of it.

CWEs
1. Shotgun parsing

2. Input language > DCF

3. Non-minimalistic input-
handing

4. Parser differentials

5. Incomplete specification

6. Overloaded fields

7. Permissive processing of
invalid input

Christopher Ulrich, "Alchemy"

Thank you!

4th IEEE Security & Privacy LangSec Workshop  
 

May 25, 2017  
San Jose, CA

http://spw17.langsec.org

http://langsec.org

Join us for

