Adaptive and Proactive Security Assessment on Energy Delivery Systems

Carlos Rubio-Medrano, Vu Coughlin, Josephine Lamp, Ziming Zhao, Gail-Joon Ahn and Anna Scaglione

Outline

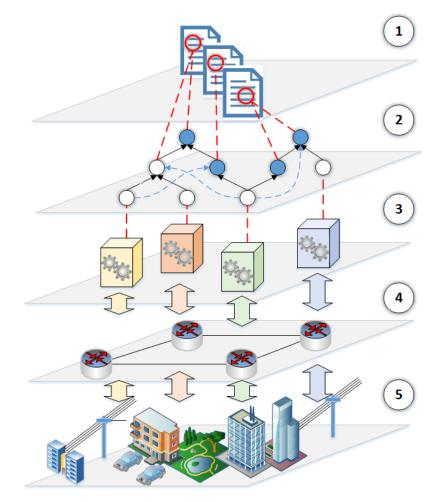
Activity Refresher	OntoEDS	ExSol	EDSGuard	Current/ Future Work
Motivation Goals Approach		A Risk Analysis Framework fo EDS		Status of Prototypes Papers Published Papers in the Making
	An Ontology- based Reposi	torv	An SDN-base Firewall App	
	and Engine To for Security Requirements	l	EDS Network	

Activity Refresher

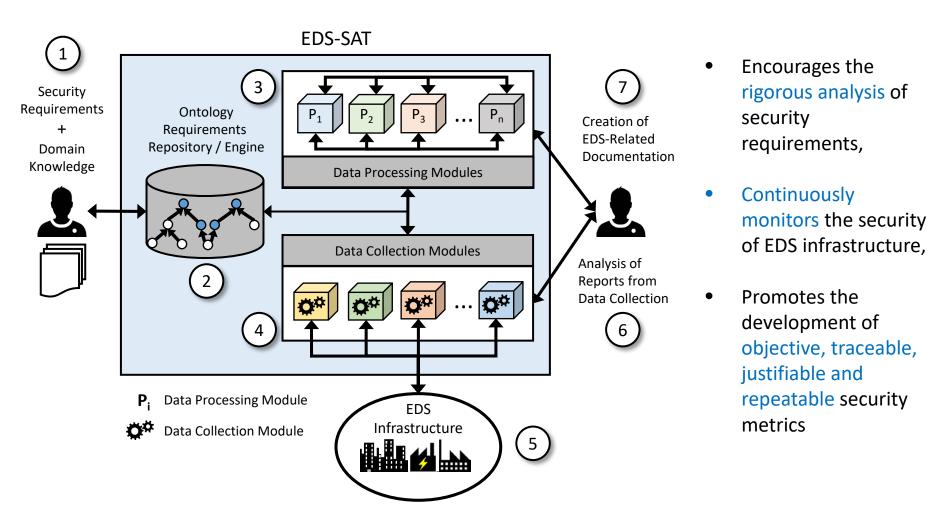
Motivation

- Security assessment in EDS gets complicated due to:
 - The distributed, highly-interconnected and heterogeneous nature of EDS, e.g., monitoring software, meters, etc.
 - Continuous reconfigurations due to on-demand changes,
 - The existence of multiple, large, dense (and sometimes conflicting) documents on security requirements,
 - E.g., subjective interpretations, non-standard implementations, and breakdowns among stakeholders

Goals

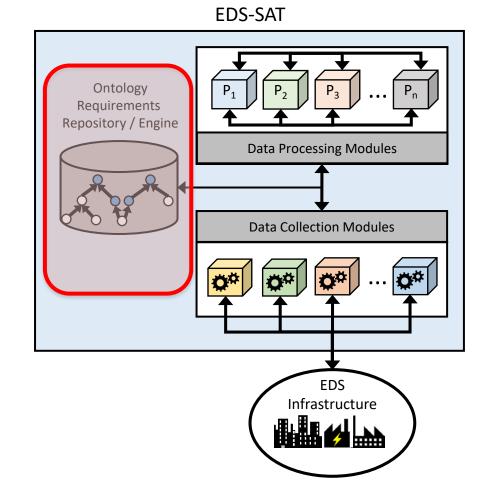

- Assess if particular EDS implementations meet security requirements,
 - Filling in the gap between high-level requirements and field implementations,
- A framework for security assessment and monitoring:
 - Well-defined (theoretically-justifiable),
 - Systematic and automated (repeatable to validate),
 - Practical and configurable (deployable to organizations),
 - Non-intrusive (minor overhead/reconfiguration as possible)

Our Approach (Big Picture)

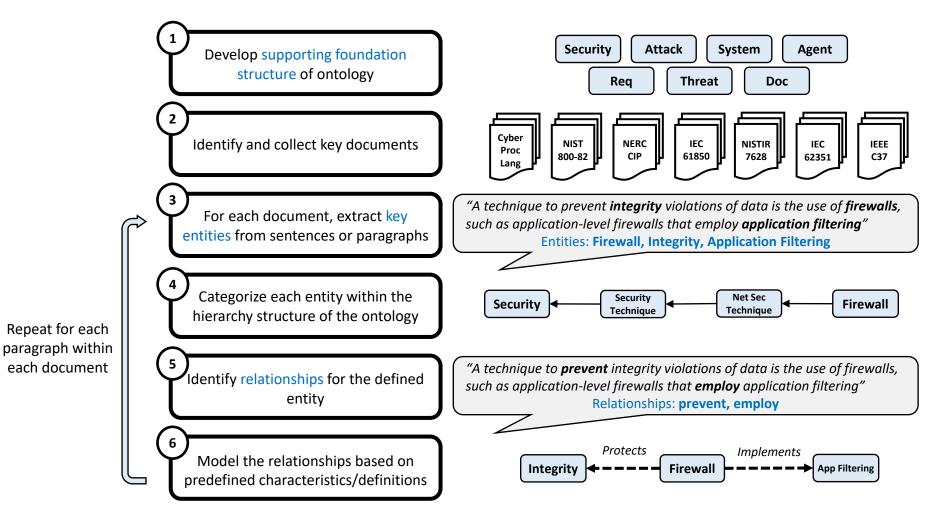

- 1. We gather the most relevant documents on best practices for EDS
- 2. Next, we obtain a description of such best practices by leveraging ontologies
- We then introduce software-based modules for security monitoring and risk analysis
- 4. Data from EDS infrastructure (5) is collected and forwarded for further processing

The EDS-SAT Security Assessment Framework

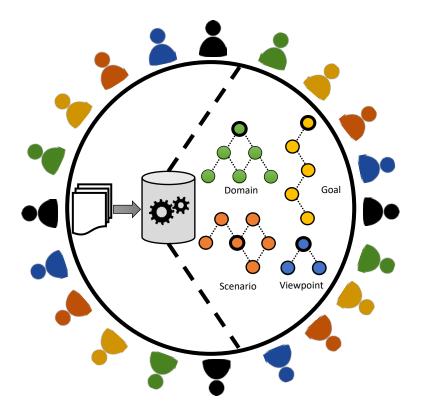
OntoEDS: Modeling Security Requirements for EDS Using Ontologies



The OntoEDS Security Requirements Engine

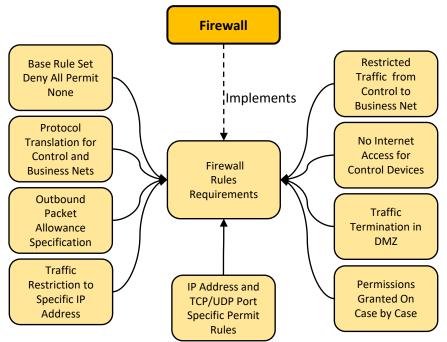

- Unambiguously represents common vulnerabilities and exposures (CVEs) *,
- Identifies interdependencies, missing and conflicting information among diverse knowledge sources,
- Supports multiple dimensions and viewpoints, e. g., relevant information for operators vs vendors

OntoEDS: Modeling Security Requirements



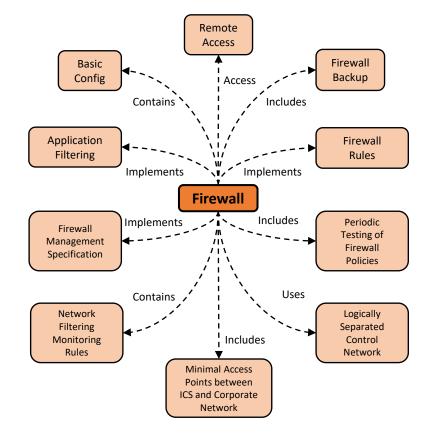
OntoEDS: Current State of Ontology

- Comprises more than 300 pages of source documents and includes 600 entities with over 1,700 relationships,
- Currently models the following:
 - Cybersecurity Procurement Language for Energy Delivery Systems developed by the Energy Sector Control Systems Working Group (ESCSWG),
 - NIST 800-82 Special Publication,
 - North American Electric Reliability Corporation Critical Infrastructure Protection (NERC CIP) standards,
 - NISTIR 7628 document,
 - IEEE C37 standards,
 - IEC 61850 and 62351 standards



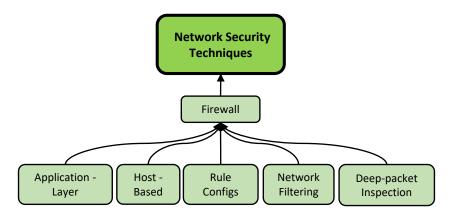
OntoEDS: Analyzing Requirements with Projections

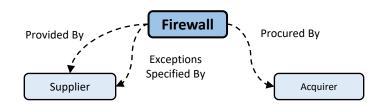
- Goal Projection: Contains objectives the system must achieve to enter into a state of security:
 - Protect system components,
 - Implement security techniques/features,
 - Defend against an attack type,
 - Identify purposes or properties of system components,
 - Protect security principles



OntoEDS: Analyzing Requirements with Projections (II)

- Scenario Projection: Facts describing a system that include agent behavior and environmental context:
 - Identifies dependencies between the system and its environment,
 - Storyline of events describing system operation,
 - Enables the understanding of a broad picture of ontology elements and their relationships





OntoEDS: Analyzing Requirements with Projections (III)

- Domain Projection: Describes a domain taxonomy relative to a specific topic,
 - May support knowledge exploration,
 - Combined with Goal Projection helps identifying interdependencies and missing requirements,
- Viewpoint Projection: Retrieves specific responsibilities of an agent,
 - May support knowledge acquisition,

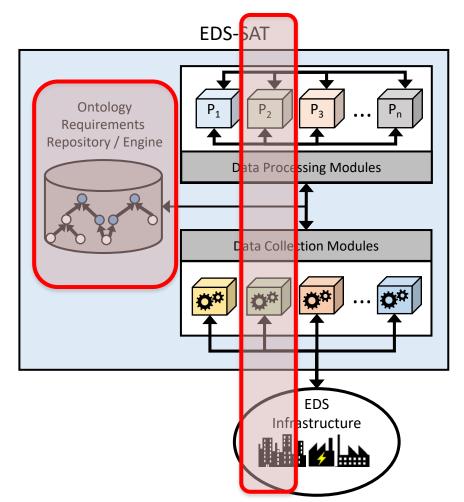


OntoEDS: Analyzing Requirements with Projections (IV)

- Risk Analysis Projection: Use a series of goal projections to elucidate threats, attack types, security countermeasures and requirements surrounding an *asset*,
 - Retrieves specific concepts in risk analysis methodologies (to be shown later),

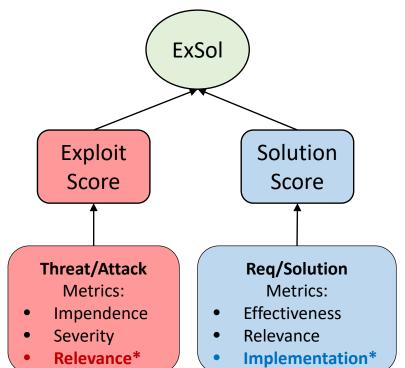
Requirements

ExSol: A Risk Analysis Framework based on Security Requirements for EDS



The Exploitation-Solution (*ExSol*) Framework

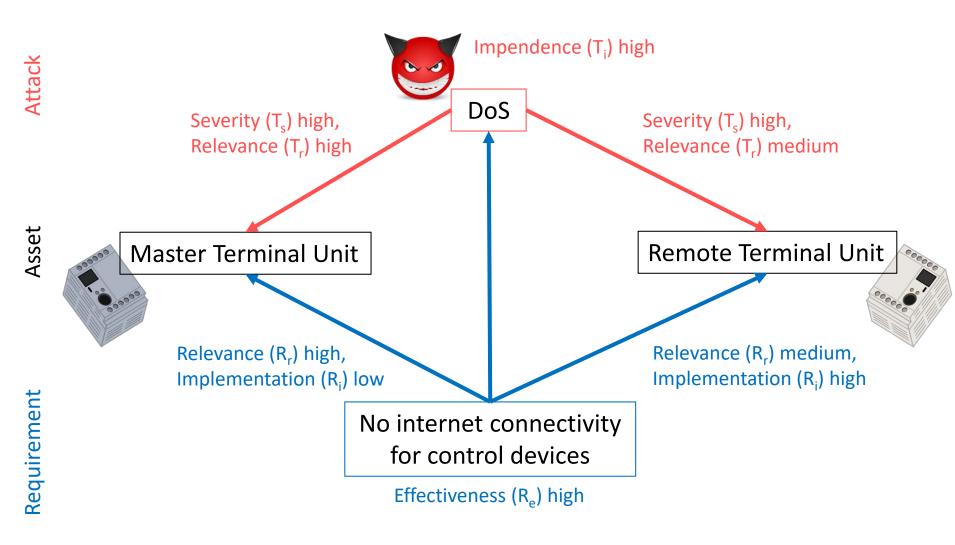
- Leverages *OntoEDS* and *EDS-SAT* for risk analysis and mitigation,
- Elucidates metrics that are cohesively combined in a mathematical model,
- Risk = the probability that a particular threat will exploit a particular vulnerability of a system*


*Vaughn, Rayford B., Ronda Henning, and Ambareen Siraj. "Information assurance measures and metrics-state of practice and proposed taxonomy." In *System Sciences, 2003. Proceedings of the 36th Annual Hawaii International Conference on*, pp. 10-pp. IEEE, 2003.

The ExSol Risk Score

- Combines different metrics into a single score to understand the risk of a system,
- Exploitation metrics and Solution metrics are matched up against one another,
- Each metric's *sub-score* is calculated on a scale from 1 (least) to 5 (greatest),
- Scores determined collaboratively by global and/or local experts,
- Calculated for an asset, but can be done for threats and attacks as well,

* Sub-scores calculated using EDS-SAT processing modules


Exploitation / Solution Score Metrics

	Metric	Definition	Defined By	
tion	Impendence (T _i)	Global / Local Expert		
Exploitation	Severity (T _s)	Severity (T _s) Impact and damage of threat/attack on the asset.		
-	Relevance (T _r)	Relevance (T _r) How applicable or targeted to the asset the threat/attack is.		
	Effectiveness (R _e)	Perception on the ability of the requirement to deter/counteract an attack/threat.	Global / Local Expert	
Solution	Relevance (R _r)	Applicability of a requirement to the asset being analyzed.	Global / Local Expert	
	Implementation (R _i)	Perception on the effectiveness of the implementation of a given the requirement in the system.	Local Expert	

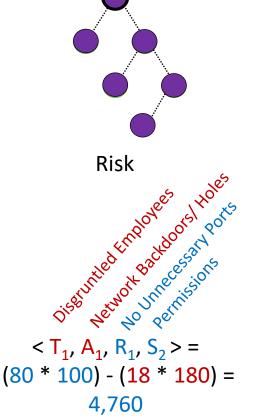
ExSol Score Metric Example

ExSol Risk Score Calculation

- Exploitation Sub-score:
 - For each Threat / Attack:
 - $(T/A) = T_i * T_r * T_s$

- Solution Sub-score:
 - For each Requirement / Security:
 - (R/S) = $R_e * R_r * R_i$
- ExSol Score = Solution Sub-score Exploitation Sub-score

ExSol > 0: Good, the greater the better ExSol = 0: Matched ExSol < 0: Bad, the lower the worse


↑ Solution ↑ ExploitationOKAY↑ Solution ↓ ExploitationGOOD↓ Solution ↑ ExploitationBAD↓ Solution ↓ ExploitationOKAY

ExSol Calculation Algorithm

- Retrieve all Threats (T), Attacks (A), Requirements (R) and Security Techniques (S) related to a given asset using the Risk Projection,
- 2. Match T, A, R and S that are *relevant* to each other, creating 4-tuples of the form: <T, A, R, S>,
- 3. For each TARS-tuple:
 - 1. Calculate the exploitation and solution sub-scores of each T, A, R and S,
 - 2. Calculate the ExSol score,

4. Evaluate risk based on the obtained ExSol scores

ExSol Risk Score Example: Network Access Point

(T/A)	Disgruntled Employees (T ₁)	Unnecessary Ports (T ₂)	Network Backdoors/ Holes (A ₁)	Spoofing (A ₂)
Impendence	3	5	4	1
Severity	2	5	5	2
Relevance	3	4	5	2
Sub-score	18	100	180	4

(R/S)	Firewall (S ₁)	Permissions (S ₂)	Network Segregation (S ₃)	Network Segmentation (S ₄)	Network Intrusion Detection (S ₅)	No Unnecessary Ports (R ₁)	No Internet for Control Devices (R ₂)	Enable Only Ports Needed (R ₃)
Effectiveness	4	4	4	4	2	5	4	4
Relevance	3	5	3	3	3	4	5	4
Implementation	4	5	3	5	4	4	5	4
Sub-score	48	100	36	60	24	80	100	64

ExSol Risk Score Example: Network Access Point (II)

T₁: Disgruntled Employees A₁: Network Backdoors/ Holes

- R₁: No Unnecessary Ports
- R₂: No Internet for Control Devices
- R₃: Enable Only Ports Needed
- S₂: Permissions
- S₃: Network Segregation
- S₄: Network Segmentation
- S₅: Network Intrusion Detection

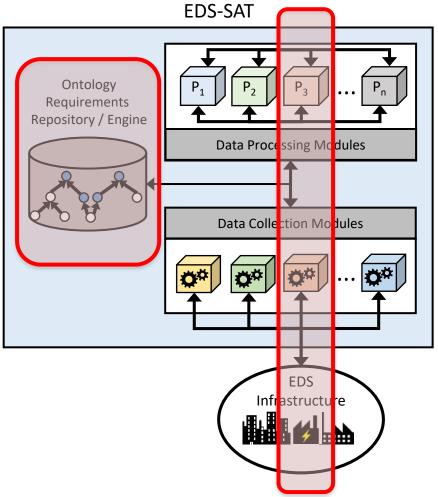
1.
$$< T_1, A_1, R_1, S_2 > = (80 * 100) - (18 * 180) = 4,760$$

2. $< T_1, A_1, R_2, S_2 > = (100 * 100) - (18 * 180) = 6,760$
3. $< T_1, A_1, R_1, S_5 > = (80 * 24) - (18 * 180) = -1320$

4.
$$< T_1, A_1, R_3, S_5 > = (64 * 24) - (18 * 180) = -1704$$

- 5. $< T_1, A_1, R_2, S_3 > = (100 * 36) (18 * 180) = 360$
- 6. $< T_1, A_1, R_1, S_4 > = (80 * 60) (18 * 180) = 1,560$

EDSGuard: Enforcing Security Requirements for EDS Networks

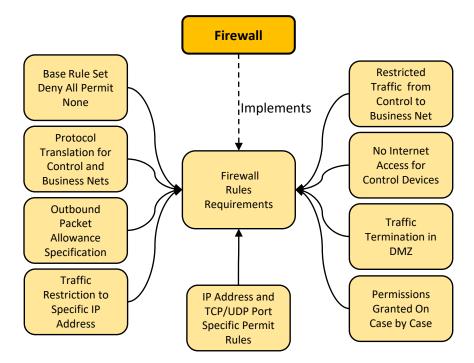


The EDSGuard SDN-based Firewall App

- Enforces security requirements on EDS firewalls continuously over time,
- Leverages:
 - OntoEDS,
 - EDS-SAT,
 - Software-defined Networking (SDN),
 - State-of-the-art Firewall Policy Management,
- Intended to deter recent attacks that leveraged erroneous firewall configurations, e.g., Ukraine 2015¹, CrashOverride²

1) R. M. Lee, M. J. Assante, and T. Conway, "Analysis of the Cyber Attack on the Ukrainian Power Grid," SANS ICS Report, 2016.

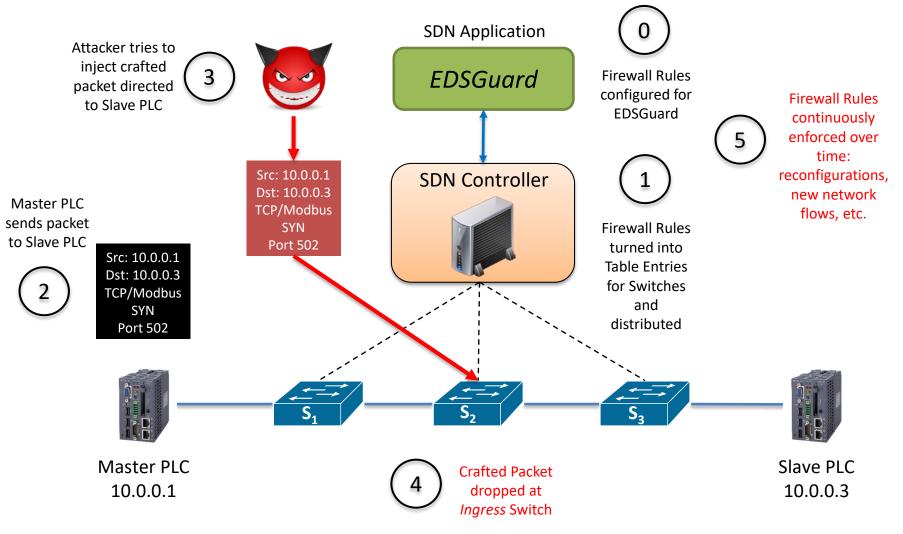
2) Dragos Inc. "CrashOverride: Analyzing the Threat to Electric Grid Operations", Technical Report, 2017.



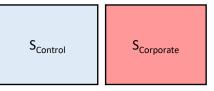
EDSGuard: Security Requirements

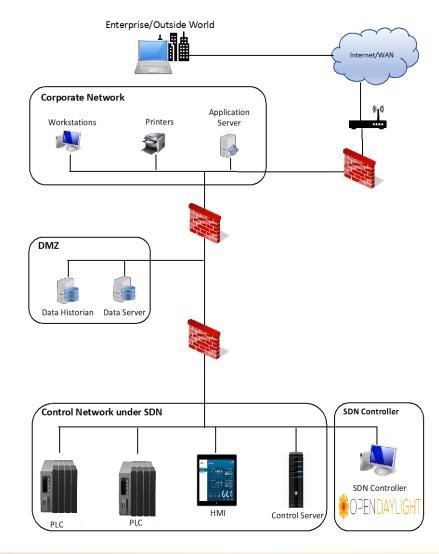
• Extracted from *OntoEDS* using Goal Projections,

• Depicts requirements for Firewall Rules and Network Topology,


 Derived from different documents, e.g., IEC 62351, NIST 800-82, Cybersecurity Procurement Language Document, etc.

EDSGuard: Overall Approach

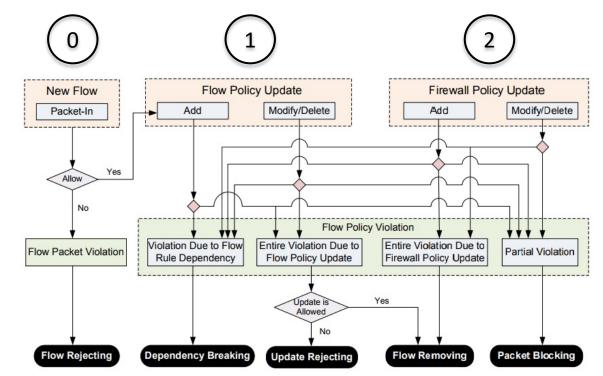



EDSGuard: Requirements Example

- Traffic should be prevented from transiting directly from the control network to the corporate network,
- Enforcement based on *authorization* spaces¹:

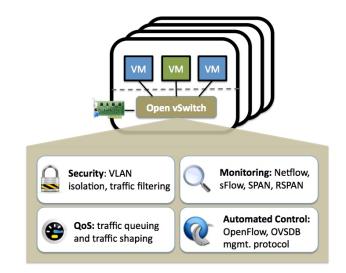
- Disjoint spaces created for each network,
- Switch entries derived from them,
- Future network flows violating spaces detected and removed,

 Discovery and Resolution of Anomalies in Web Access Control Policies. Hongxin Hu, Gail-Joon Ahn and Ketan Kulkarni.
 IEEE Transactions on Dependable and Secure Computing (TDSC), 2013



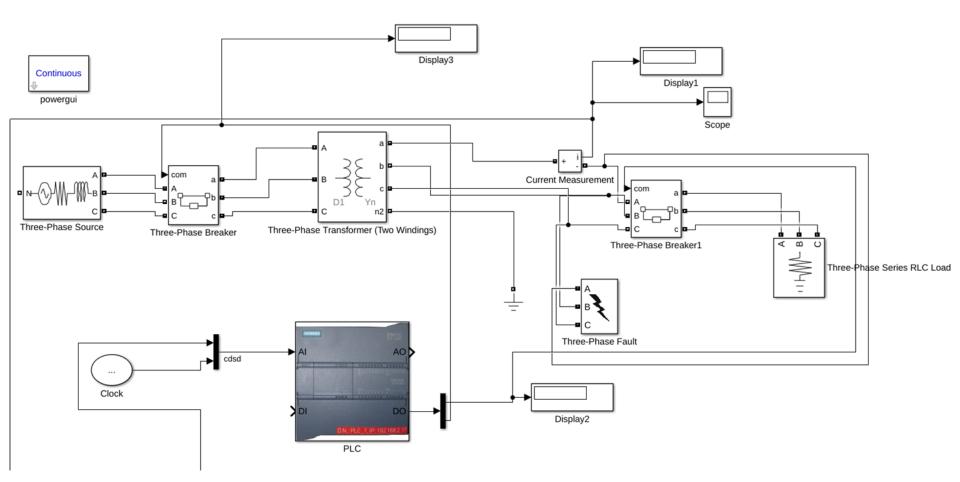
EDSGuard: Detection/Resolutions

- Different detection and resolution strategies available,
 - This way, EDSGuard not only detects violations, but can proactively solve them as well,
- EDSGuard may then serve as an effective first-response countermeasure tool for handling security incidents,



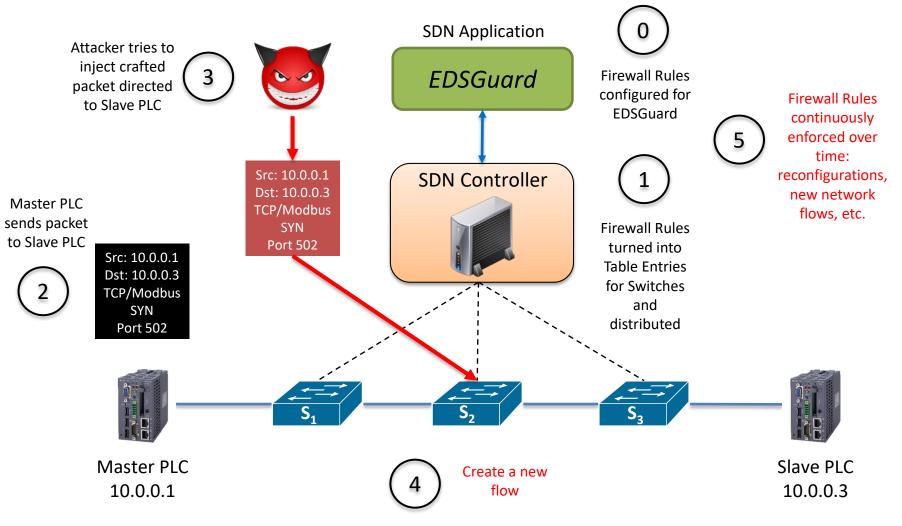
EDSGuard: Experimental Testbed

- VM1: Slave_PLC with Matlab simulator + libmodbus
- VM2: Master_PLC with libmodbus library
- VM3: Attacker with libmodbus library

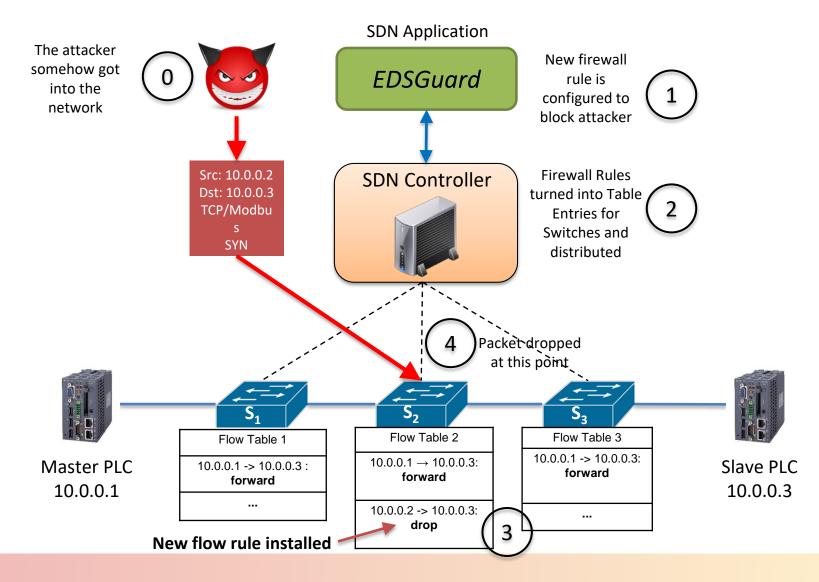


EDSGuard: Matlab Simulator

EDSGuard: Firewall Rule Format

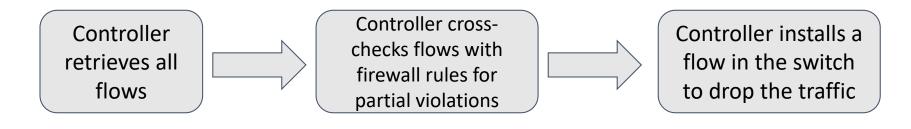

- Rule ID: unique ID for the firewall rules,
- Node: Ppenflow switch appears on controller,
- In Port: the interface of the switch,
- Source and Destination IPs,
- Source and Destination Ports,
- Action: Allow/Deny

EDSGuard: Flow Update Rejection


EDSGuard: Flow Update Rejection

ASUAD\vhnguye1@en40586321: ~/workspace - + x
File Edit View Search Terminal Help
(((flow_history : this is 4 th visits.))) Applied FlowRuleNode Name : #UF\$TABLE*0-12
<pre></pre>
{ vlan = 0, src_IP = /0.0.0.0/0, dst_IP = /0.0.0.0/0 }
current_switch_info = openflow:1 / openflow:1:2
<<<< next_HeaderObject >>>>> { vlan = 0, src_IP = /0.0.0.0/0, dst_IP = /0.0.0.0/0 }
next_switch_info = openflow:1 / openflow:1:1
<<< Inverse Flow Computation >>>
$\{ vlan = 0, src IP = /0.0.0.0/0, dst IP = /0.0.0.0/0 \}$

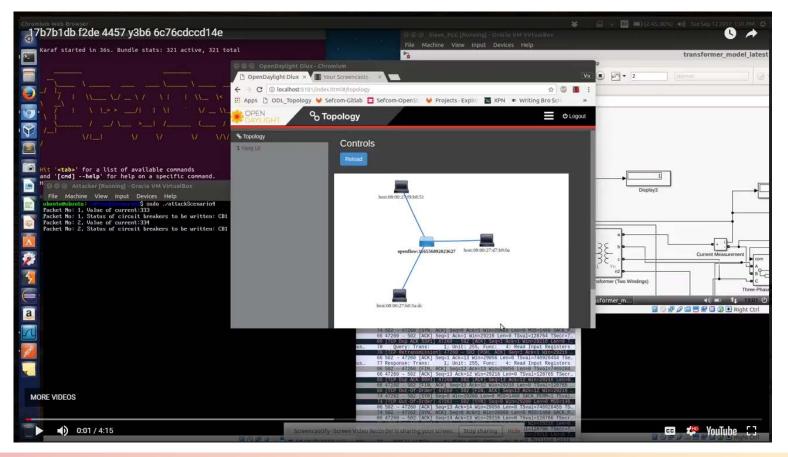
S2-Update Rejecting applied. Flow being rejected: 1
Found a matching rejected rule in ruletablestorage Removing flow: org.opendaylight.flowguard.impl.FlowRuleNode@d42fe12 from node: openflow:1
Deleted Flow rule 1 of switch: openflow:1
Found a lower priority rule in flow history of #UF\$TABLE*0-2
Propagating to target dpid: openflow:2 port: openflow:2:1 Start Index 0
RuleTable info: In_port openflow:1:1 Priority: 32767
Sample packet info: openflow:1:openflow:1:2
RuleTable info: In_port null Priority: 100 Sample packet info: openflow:1:openflow:1:2
Found a rule with same/wildcarded next ingress port
Unrecognized Ethernet Type: 35020
RuleTable info: In_port openflow:1:1 Priority: 2
Sample packet info: openflow:1:openflow:1:2 RuleTable info: In port openflow:1:2 Priority: 2
Sample packet info: openflow:1::openflow:1:2
RuleTable info: In_port null Priority: 0
Sample packet info: openflow:1:openflow:1:2


EDSGuard: Packet Blocking

EDSGuard: Packet Blocking Resolution

OFPST_FLOW reply (OF1.3) (xid=0x2): cookie=0x2b000000000000000, duration=82.772s, table=0, n_packets=0, n_bytes=0, priority=100,dl_type=0x88cc actions=CONTROLLER:65535 cookie=0x2b000000000000000, duration=80.750s, table=0, n_packets=2, n_bytes=140, priority=2,in_port=1 actions=output:2,output:3,CONTROLLER:65535 cookie=0x2b000000000000000d, duration=80.750s, table=0, n_packets=2, n_bytes=140, priority=2,in_port=2 actions=output:1,output:3,CONTROLLER:65535 cookie=0x2b0000000000000000, duration=80.750s, table=0, n_packets=2, n_bytes=140, priority=2,in_port=2 actions=output:1,output:3,CONTROLLER:65535 cookie=0x2b000000000000000f, duration=80.750s, table=0, n_packets=2, n_bytes=140, priority=2,in_port=3 actions=output:2,output:1,CONTROLLER:65535 cookie=0x2b000000000000000000, duration=82.772s, table=0, n_packets=2, n_bytes=0, priority=0 actions=drop

Before resolution


	1
OFPST	FLOW reply (0F1.3) (Ald-0X2):
	ie=0x0, duration=808.408s, table=0, n_packets=0, n_bytes=0, priority=32767,ip,in_port=2,nw_src=10.0.0.2,nw_dst=10.0.0.1 actions=drop
	te=0x2beeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
	ie=0x2b00000000000000a, duration=969.560s, table=0, n_packets=5, n_bytes=322, priority=2,in_port=2 actions=output:1,output:3,CONTROLLER:65535
	ie=0x2b00000000000000, duration=969.560s, table=0, n_packets=11, n_bytes=854, priority=2,in_port=3 actions=output:2,output:1,CONTROLLER:65535
	ie=0x2b00000000000000b, duration=969.560s, table=0, n_packets=10, n_bytes=756, priority=2,in_port=1 actions=output:2,output:3,CONTROLLER:65535
cooki	ie=0x2b0000000000000004, duration=971.563s, table=0, n_packets=2, n_bytes=84, priority=0 actions=drop

EDSGuard: Demo Video on YouTube

https://youtu.be/1ihcFO0BVLw

Current and Future Work

Current and Future Work

- OntoEDS:
 - Paper accepted for publication at IEEE CIC 2017,
- ExSol:
 - Working on refining mathematical model and case study,
 - Introducing *reference* ExSol scores for Attacks/Threats for comparison,
 - Paper expected by the end of the Fall 2017 semester,
- EDSGuard:
 - Working on initial prototype and experimental setup,
 - Paper expected by the end of the Fall 2017 semester,
- EDS-SAT:
 - Introductory Paper published at IEEE MSCPES 2017,
 - Working on incorporating the aforementioned tools as modules,
 - Detailed Paper expected by Second Quarter of 2018,

Thank you all for listening!

• Time for Q & A !

- Contact:
 - ASU Center for Cybersecurity and Digital Forensics: https://globalsecurity.asu.edu/cdf
 - Josephine Lamp: jalamp@asu.edu
 - Vu Couhglin: vhnguye1@asu.edu
 - Carlos Rubio-Medrano: crubiome@asu.edu