

Security Games for Cyber Resilient Bulk Power Systems

Gael Kamdem De Teyou

Postdoctoral Researcher, Dept. of Modeling, Simulation, and Visualization Engineering, ODU

Sachin Shetty

Associate Professor, Dept. of Modeling, Simulation, and Visualization Engineering, ODU

OUTLINE

- INTRODUCTION
- POWER GRID NETWORK ARCHITECTURE
- VULNERABILITY MULTI-GRAH
- TWO-PLAYER ZERO SUM-MARKOV GAME
- SIMULATIONS
- CONCLUSION

OUTLINE

- INTRODUCTION
- POWER GRID NETWORK ARCHITECTURE
- VULNERABILITY MULTI-GRAH
- TWO-PLAYER ZERO SUM-MARKOV GAME
- SIMULATIONS
- CONCLUSION

- Advanced
 - Attacker adapts to defenders' efforts
 - Higher level of sophistication
 - Can develop or buy Zero-Day exploits
- Persistent
 - Attacks are objective and specific
 - Will continue until goal is reached
- Threats
 - Entity/s behind the attack

Critical Infrastructure

Water supply

Transportation

Power Grid

Information and Telecommunications

Oil and gas

December 2015 Ukraine power grid attack

- Hackers compromised corporate networks using spear-fishing emails with BlackEnergy trojan.
- Remotely, hackers took control of the SCADA network, switched off power substations and then disrupted electricity supply to the end customers.

- Destruction of files stored on servers and workstations.
- Denial-of-service attack on call-center to deny up-to-date information on the blackout

2nd cyber-attack on Ukraine power grid in December 2016

- Nearly a quarter of million people lost power in the Ivano-Frankivsk region of Ukraine.
- Hackers sent emails with infected attachments to power company employees, stealing their login credentials and then taking control of the power grid system to cut the circuit breakers at nearly 60 substations.

• The blackout lasted several hours

2nd cyber-attack on Ukraine power grid in December 2016

- Nearly a quarter of million people lost power in the Ivano-Frankivsk region of Ukraine.
- Hackers sent emails with infected attachments to power company employees, stealing their login credentials and then taking control of the power grid system to cut the circuit breakers at nearly 60 substations.

• The blackout lasted several hours

Increase the resilience of Power Grid with R4 framework

- Increase the **Rapidity** by reducing the delay between the intrusion detection of the malware and the response of the defender;
- Increase the **Resourcefulness** by finding the appropriate vulnerable services to shut down
- Increase the **Robustness** by redirecting the malware into part of the system where critical assets are not accessible, and thus minimizing the impact of attacks

OUTLINE

- INTRODUCTION
- POWER GRID NETWORK ARCHITECTURE
- VULNERABILITY MULTI-GRAH
- TWO-PLAYER ZERO SUM-MARKOV GAME
- SIMULATIONS
- CONCLUSION

Recommended defense-in-depth architecture for Industrial Control System [1]

OUTLINE

- INTRODUCTION
- POWER GRID NETWORK ARCHITECTURE
- VULNERABILITY MULTI-GRAH MODEL
- TWO-PLAYER ZERO SUM-MARKOV GAME
- SIMULATIONS
- CONCLUSION

Edge vulnerability

An edge vulnerability $e \in E$ is a directed edge from a node v_1 to a node v_2 which corresponds to a vulnerability hosted by an application on v_2 that the system rules allow to access from node v_1 .

 $\Box \Phi$ the set of vulnerabilities

 $\Box \varphi(e) \in \Phi$, the vulnerability associated to *e*

 $\Box v_2 = \Upsilon_{Head}(e)$ is the head of e

 $\Box v_1 = \Upsilon_{Tail}(e)$ is the tail of e

Direct acyclic graph

Lateral movement

Defender actions						
	Φ_1	Φ ₂	Φ ₃	Φ ₄	Φ ₅	Φ ₆
<i>e</i> ₁	v_0	<i>v</i> ₁	<i>v</i> ₁	<i>v</i> ₁	<i>v</i> ₁	v_1
<i>e</i> ₂	v_1	v_1	v_1	v_0	v_1	v_1
<i>e</i> ₃	v_2	<i>v</i> ₂	<i>v</i> ₂	<i>v</i> ₂	<i>v</i> ₂	v_0
e_4	v_0	v_2	v_2	<i>v</i> ₂	v_2	v_2
e ₅	v_3	v_3	v_0	v_3	v ₃	v_3
e ₆	v_3	v_0	v_3	v_3	v_3	v_3
 e ₇	v_3	v_3	v_3	v_0	v_3	v_3
e ₈	v_4	v_4	v_4	v_0	v_4	v_4
e ₉	v_4	v_4	v_4	v_4	v_0	v_4

Matrix of actions at $\,\,\mathcal{V}_{0}$

 \Box Attacker moves to v_3

Attacker actions

 $\hfill \hfill \hfill$

Lateral movement

- \Box Attacker moves to v_{10}

Lateral movement

 Active vulnerabilities

 Φ_1 Φ_2 Φ_3 Φ_4 Φ_5 Φ_6

Attacker remains at node v₁₀
 Vulnerable service associated to Φ₃ is disabled

Attacker actions

Lateral movement

Matrix of actions at v_{10}

- \Box Attacker moves to node v_{14}

Lateral movement

- $\hfill\square$ Attacker is isolated at node v_{14}
- $\hfill \begin{tabular}{ll} \hline \begin{tabular}{ll} U \\ \hline \begin{tabula$

Lateral movement

Attacker is isolated at node v₁₄
 Vulnerable service associated to Φ₄ is disabled

OUTLINE

- INTRODUCTION
- POWER GRID NETWORK ARCHITECTURE
- VULNERABILITY MULTI-GRAH
- TWO-PLAYER ZERO SUM-MARKOV GAME
- SIMULATIONS
- CONCLUSION

Two-player zero-sum Markov Game

A two-player zero sum Markov game is defined as a 6-tuple $(S, A, O, P, \mathcal{R}, \gamma)$ where:

- $\square S = \{s_1 \dots s_l\} \text{ is a finite set of game states;}$
- \Box $A = \{a_1 \dots a_n\}$ is the set of actions of the maximizer (row player);
- \Box $O = \{o_1 \dots o_m\}$ is the set of actions of the minimizer (column player);
- \square *P* is a Markovian transition model, with *P*(*s*, *a*, *o*, *s'*) being the probability that s' will be the next game state when players take actions a and *o* respectively;
- □ The function $\mathcal{R}(s, a, o)$ specifies the immediate reward (or cost) of players for taking actions *a* and *o* in state *s*;
- \square $\gamma \in]0, 1]$ is the discount factor for future rewards;

Two-player zero-sum Markov Game

Game matrix

		Column player				
		01	0 ₂		0 _m	
L U	<i>a</i> ₁	$\mathcal{R}(s, a_1, O_1)$				
player	<i>a</i> ₂					
Rowp						
Re	a _n				$\mathcal{R}(s, a_n, o_m)$	

Immediate reward matrix for state $s \in S$

Two-player zero-sum Markov Game Player's Policy

- □ A policy $\pi_A: S \to \Omega(A)$, for the row player (maximizer) is a function that gives for each state *s* a probability distribution $\pi_A(s)$ over the maximizer actions $A = \{a_1..a_n\}$. For any policy $\pi_A, \pi_A(s, a)$ denotes the probability to take action *a* in state *s*.
- \Box For any policy π , $Q^{\pi}(s, a, o)$ is the expected sum of discounted reward of the row player:

$$Q^{\pi}(s, a, o) = \underbrace{\mathcal{R}(s, a, o)}_{\text{Immediate reward}} + \underbrace{\gamma \sum_{s' \in S} P(s, a, o, s') \min_{o' \in O} \sum_{a' \in A} Q^{\pi}(s, a, o) \pi(s', a')}_{\text{Future rewards}}$$

 \Box Optimal policy π and two Bellman functions:

$$\begin{cases} W(s) = \max_{\pi_A(s)\in\Omega(A)} \min_{o\in O} \sum_{a\in A} Q(s a, o) \pi'(s, a) \\ Q(s, a, o) = \sum_{s'\in S} P(s' \mid a, o, s) [\mathcal{R}(s, a, o, s') + \gamma W(s')] \end{cases}$$

Two-player zero-sum Markov Game

Value iteration algorithm

Value iteration $(S, A, O, P, \mathcal{R}, \gamma)$

 $W \leftarrow 0$
 $l \leftarrow 0$
Repeat

l + +

For each $s \in S$ do

$$W_{l+1}(s) = \max_{\pi_A(s) \in \Omega(A)} \min_{o \in O} \sum_{a \in A} \pi(s, a) \sum_{s' \in S} P(s' \mid a, o, s) [\mathcal{R}(s, a, o, s') + \gamma W_l(s')]$$

Until $\forall s \in S, |W_{l+1}(s) - W_l(s)| < \epsilon$

For each $s \in S$ do

$$\pi(s) \leftarrow \pi(s): \max_{\pi_A(s) \in \Omega(A)} \min_{o \in O} \sum_{a \in A} \pi(s, a) \sum_{s' \in S} P(s' \mid a, o, s) [\mathcal{R}(s, a, o, s') + \gamma W_l(s')]$$

Return π , W_{l+1}

Two-player zero-sum Markov Game

Application to lateral movement

□ *S* is a set of finite games, the attacker is the maximizer and the defender the minimizer

 \Box A unit game $s \subseteq S$ is completely defined by:

- A node $v_s ⊆ V$ indicating the position of the attacker
- a set of edges $A_s ⊆ E_{v_s} ⊆ E$ adjacent to v_s
- and a set of active vulnerabilities $O_s \subseteq \Phi$.

 $\square n_s = |A_s| \text{ is the number of active edges of state } s$

 \square $m_s = |O_s|$ is the number of active vulnerabilities of state *s*

		Defender actions			
		$arphi_1$	φ_2		φ_{m_s}
Attacker actions	<i>e</i> ₁				
	<i>e</i> ₂				
	e_{n_s}				

Game

The attacker exploits edge $e_i \in A_s$ and the defender shut down the application associated to vulnerability $\varphi_j \in O_s$.

 $\Box \ \varphi_j = \varphi(e_i):$

- The efforts of the attacker are in vain
- The immediate reward of the attacker is $\mathcal{R}_A(s, e_i, \varphi_j) = \zeta(\varphi(e_i))$
- The attacker stays at the same mode.

Effort required to exploit the vulnerability

< 0

 $\Box \varphi_j \neq \varphi(e_i):$

- The attacker exploits successfully edge e_i and moves forward to next node
- The immediate reward of the attacker is $\mathcal{R}_A(s, e_i, \varphi_j) = \zeta(\varphi(e_i)) + A_t[\Upsilon_{Head}(e_i)]$

Effort required to exploit the vulnerability

• The attacker moves to the next node.

Attractivity of next node

≥0

OUTLINE

- INTRODUCTION
- POWER GRID NETWORK ARCHITECTURE
- VULNERABILITY MULTI-GRAH
- TWO-PLAYER ZERO SUM-MARKOV GAME
- SIMULATIONS
- CONCLUSION

Exploit cost of vulnerabilities

Base metrics of the Common Vulnerability Scoring System (CVSS) [3]

		Local	0.395
Access Vector $A_v(\varphi)$	Describes how close the attacker must be to exploit the vulnerability φ	Adjacent network	0.64
		Remote network	1.0
	Describes how easy or	High	0.395
Access Complexity $A_c(\varphi)$	difficult it is to exploit the	Medium	0.61
	vulnerability φ	Low	0.71
Access	Describes the number of	Multiple	0.45
Authentication	time an attacker must authenticate to exploit the vulnerability φ	Single	0.56
$A_a(\varphi)$		None	0.704
CVSS Score $20.A_v(\varphi).A_c(\varphi).A_a(\varphi)$		By construction,	$1.4 \le CVSS(\varphi) \le 10$

Exploit cost of vulnerabilities

The *edge cost* is a function ζ over the set of edges **E** which measures the amount of effort required to exploit an edge vulnerability:

$$\zeta: E \to [-11, -1]$$
$$e \to \zeta(e) = CVSS(\varphi(e)) - 11$$

Node Attractivity

The attractivity of a node $v \in G$ measures its appeal to cyber attack.

Typical nodes	Layer	Severity of cyber-attacks	Impact on power grid	Features	Attractivity $A_t(v)$
Application servers	-		Availability	 Access to substation's controllers in real time Control algorithms and control 	
Database servers	Control system	Critical	Integrity Confidentiality	commands	100
	-		connucritianty	 Power transmission planning 	
Engineering workstations				 Power grid sensor's data 	
Historian database			Confidentiality	Conv of control system data	
Web servers	Control system DMZ	High	Confidentiality Integrity	 Copy of control system data 	50
Authentication servers					
Business servers				Duciness data /killing genuer	
Business workstations	Corporate network	Medium	Confidentiality	 Business data (billing, power consumption, etc) 	25
Web servers				 Data centers 	
Authentication server					
Web servers	Corporate DMZ	Low	Confidentiality	Copy of corporate data	12.5
FTP servers					

Simulation setup

- All nodes have the same operating system.
- Only vulnerabilities published in the last month are considered as unpatched (August 2017)
- Vulnerabilities depend on type of products and manufacturers
- For each position, the attacker chooses one edge vulnerability to exploit
- At each time step, the defender choses a vulnerable application to shut down. This automatically cut all edges corresponding to that application.
- To capture security policies, links between layers are generated with a Bernoulli trial probability law of parameter *p* (Some users, some devices and some protocols may not be allowed to establish connections)
- Number of nodes at each layer:

Layer	Corporate DMZ	Corporate	Control DMZ	Control system	Total
Number of nodes	6	64	4	26	100
Percentage	Percentage 70%		30)%	100%

Rapidity

The convergence speed is affected by the discounted factor.

Deterministic Strategies

If the attacker uses a deterministic strategy, the optimal defense strategy is also deterministic.

Attacker strategy	Optimal defense strategy
Shortest path	Vulnerabilities corresponding to the shortest path
Least cost edges	Vulnerabilities corresponding to least cost edges
Movement toward next most attractive node	Vulnerabilities corresponding to most attractive node

Robustness

Statistical distribution of the final location of the attacker with 100 Monte Carlo trials

Robustness

Statistical distribution of the time needed by the attacker to reach the control system layer with 100 Monte Carlo trials

OUTLINE

- INTRODUCTION
- POWER GRID NETWORK ARCHITECTURE
- VULNERABILITY MULTI-GRAH
- TWO-PLAYER ZERO SUM-MARKOV GAME
- SIMULATIONS
- CONCLUSION

Conclusion and Perspective

- Markov improves the system resilience:
 - by increasing the rapidity of the response (response delay of few seconds with no human in the loop)
 - by increasing the robustness the attack (critical asset are protected and the impact is minimized)
 - By increasing the resourcefulness (providing the optimal response actions at each point of the system)
- The game is built on known vulnerabilities that an attacker can exploit to move laterally from host to host until reaching an attractive target.
- Need to consider the physical layer