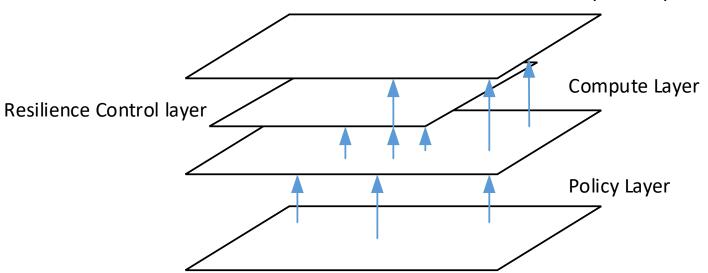
Implementation of Resilience via Operational Controls

Art Conklin, University of Houston

Funded by the U.S. Department of Energy and the U.S. Department of Homeland Security | cred-c.org

Security in IT vs. OT

- IT security
 - CIA associated with authorized user and data flow
- OT security
 - Continued safe operation of the system regardless of changes in the environment


What is resilience

- Cyber Resiliency
 - "The emergent property of a system that can continue to carry out its mission after disruption that does not exceed its operational limit"
 - "The ability of a system to anticipate, withstand, recover from, and/or evolve to improve capabilities in the face of, adverse conditions, stresses, or attacks on the supporting cyber resources it needs to function."
- Anticipate
- Withstand
- Recover
- Evolve

Tools

- Policy Layer
 - BC/DRP/COOP
 - Resiliency Policies and Procedures
- Compute Layer
 - Redundancy
 - Security
 - Layers (Purdue Model)

- Resilience Control Layer
 - Safety
 - Interlocks

Physical Layer

System Emergent Property

- Must be engineered in to emerge
 - FMEA how does system operate under failure situations
 - Threat Modeling where does the disruption come from
 - Safety Systems Purdue model and isolationism
- Determining what is proper is non-trivial Process specific
 - What are resilient modes?
 - What are resilient operations?

Implementation of Resilience via Operational Controls

- Resiliency is an emergent property of a system.
 - Emergent properties are not defined by single system elements
 - Emerge as a result of system interactions
- To achieve resiliency in a system requires specific elements in system design and operation.
- Determine how operational controls affect system resiliency.
 - Operational controls are used to control security another emergent property.
 - Controls are used all the time.
 - Which controls can improve resiliency.

Implementation of Resilience via Operational Controls

- This activity looks at how operational controls that are used to achieve specific objectives such as security can be adapted and patterned by use into controls that target greater resiliency.
 - Create a top 20 resiliency controls list, the objective is to determine and highlight how operational controls can enhance system resiliency.
 - Production of an operational controls checklist and associated documentation for implementation.
- Top 20 Controls key concept built from analyzing offense

Top 20 Controls (security in OT)

- 1. Inventory of Authorized and Unauthorized Devices
- 2. Inventory of Software
- 3. Secure Configurations for All
- 4. Secure Network Engineering
- 5. Limitation and Control of Network Ports, Protocols, and Services
- 6. Boundary Defense
- 7. Secure Configurations for Network Devices
- 8. Maintenance, Monitoring, and Analysis of Security Audit Logs
- 9. Security Skills Assessment and Appropriate Training to Fill Gaps
- 10. Incident Response Capability

- 11. Malware Defenses
- 12. Data Recovery Capability
- 13. Controlled Use of Administrative Privileges
- 14. Penetration Tests and Red Team Exercises
- 15. Controlled Access Based on the Need to Know
- 16. Account Monitoring and Control
- 17. Data Loss Prevention
- 18. Continuous Vulnerability Assessment and Remediation
- 19. Application Software Security
- 20. Wireless Device Control

How to get to resiliency

- Anticipate
- Withstand
- Recover
- Evolve
- Apply to controls

- What is offense in OT
- Loss of View
- Loss of Control
- Denial of View
- Denial of Control
- Denial of Safety
- Manipulation of View
- Manipulation of Control
- Manipulation of Safety

Top 20 Controls (resiliency in OT)

- 1. Inventory of Authorized and Unauthorized Devices
- 2. Inventory of Software
- 3. Secure Configurations for All
- 4. Secure Network Engineering
- 5. Limitation and Control of Network Ports, Protocols, and Services
- 6. Boundary Defense
- 7. Secure Configurations for Network Devices
- 8. Maintenance, Monitoring, and Analysis of Security Audit Logs
- 9. Security Skills Assessment and Appropriate Training to Fill Gaps
- 10. Incident Response Capability

- 11. Malware Defenses
- 12. Data Recovery Capability
- 13. Controlled Use of Administrative Privileges
- 14. Penetration Tests and Red Team Exercises
- 15. Controlled Access Based on the Need to Know
- 16. Account Monitoring and Control
- 17. Data Loss Prevention
- 18. Continuous Vulnerability Assessment and Remediation
- 19. Application Software Security
- 20. Wireless Device Control

• Anticipate

- Withstand
- Recover
- Evolve

Why we aren't there

- Security controls "defend" the information side of the process including control functions
- The process has its own modes and paths
 - Ever increasing temperature \leftarrow when to recognize, when to control
 - Steady state vs. stuck
- Resilience requires more than normal control
 - Anticipate
 - Where are we now
 - Where are we going
 - When will we move to extremis

Most action today is withstand in nature

- Prevent the hit from hurting us
- Now looking at the "ICS Attack Phenomenon"
 - Malware got on your system (problem #1)
 - You lose Visibility and Control (problem #2)
 - Your system no longer really yours (problem #3)
- We get #1 withstand
- We need to work on #2 and #3 this is where we are thinking and working

Next Steps

- Look at attack: change of process control logic
 - How will controls see the change
 - How will we recognize the change
 - Today's controls will see attacks (some) and deviations (some)
 - Today's controls cannot see process change
- How can NSM give us insight?

Questions?

Art Conklin waconklin@uh.edu

