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Programmable Logic Controllers (PLCs)
and Industrial Control Systems (ICSs)

Management Level




RUTGERS

What is a Programmable Logic Controller(PLC)?

e The interface between
cyber and physical
components in many
CPS applications
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What is a Programmable Logic Controller(PLC)?

e The interface between
cyber and physical
components in many
CPS applications

e Contain simple logic
code that is easy to
verify

e Typically the target in
CPS attacks

— E.g., Stuxnet
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PLC Architecture

ICS Network HMI
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Example Industrial Control System
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Network
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breaker in this scenario is controlled by a PLC
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Example Industrial Control System
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An HMI System (in this case, a
SCADA center)

May monitor the PLC values and
send commands
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April 2007
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Example Industrial Control System

400 MW
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0.0000 Deg
1.0500 pu

-2.7361 Deg
1 0.9704 pu
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Physical System: Power Grid
Network

A programmer will be
allowed to change The
PLC configuration as well
as the Control logic of
the system
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Example Industrial Control System

400 MW
200 Mvar

217.29 MW
195.21 Mvar

0.0000 Deg
1.0500 pu

-2.7361 Deg
1 0.9704 pu

These 2 connections
typically have different
access rights

FGL's 3-bus Test System
Developed by Francisco M. Gonzalez-Longatt
April 2007
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Previous Attacks on PLC’s: Stuxnet

e Advanced malware worm that attacked Siemens S7 PLC’s and
WinCC systems

e Targeted high frequency drives controlling centrifuges
e Caused billions of dollars in damages
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Going back to our Example ICS...
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Stuxnet’s PLC Attack Overview

Step v
stuxnet ariginal
sTothxdy. d1l but renamed
request sTothysx. d1l
code block PLC
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Stuxnet’s PLC Attack Overview

Step v
sturnet ariginal I
s7othxdx. d1l but renamed
request sTothysx. d1l I
code block PLC
from PLC i
sThlk_read | 57hIk_read I SaRaa |
Tttt T . Tl sTL !
how code 1 STL : 1 STL : : code |
' code ' code ..q_l_ i block
block fram | block 1 pe— hlpck !
PLC 10 USET - | | |

Programmer’s PC
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Stuxnet’s PLC Attack Overview

Step v
tuinet ariginal I
othxdx. d but renamed
redqutwlalstk sTothxgx. dll | oL
code bloc
fram PLC
sTblk_read l,_5.'f'|:n||n:_rea|:l I R |
pEEEEE EEEEE s e |
i i | i I i STL !
how code 1 STL : 1 STL : : code :
' code | ' code . block
block fram : , : block 1 I !
PLC to user i | | |
| modified |
| STL
I code
| block

Programmer’s PC
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Prior Efforts to Mitigate Attacks like Stuxnet

* Typically offline, passive solutions

e External solutions for PLCs
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ILIL Code
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Harvey: Model-Aware Rootkit

e A rootkit that takes into account the
physical topology of the ICS

e Model

— Uses physical models to optimize control
commands for an adversarial objective
function

e PLCinfection: compromising the PLC’s
firmware

— Utilize the firmware update mechanism to
replace firmware over the network

— Local firmware modifications, e.g., SD card or
JTAG implantation

— Run-time attacks, e.g., network exploits or
remote code execution vulnerabilities
(FrostyURL)
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System Model

&,\

Physical
System

Operator
A

(Power Grid)

%v

&

) 4

Central
I
Control
Sensor / Actuator

HMI: Human-Machine Interface

PLC: Programmable Logic Controller
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Adversary Model

e Stealthiness
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Adversary Model

e Stealthiness
e PLC-only attack
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Adversary Model

e Stealthiness
e PLC-only attack

e Physical model
extraction
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Physics-Awareness: 2-Way Data Manipulation

C Operator
L

o Sy
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I
|
1
1 I
:
| Legitimate Control Logic
|
|
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measurements

PLC Firmware Rootkit (Power System Model)

dversary-optimal
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Back to ICS Example...

400 MW
200 Mvar

217.29 MW
195.21 Mvar
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Stuxnet attacked these
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FGL's 3-bus Test System
Developed by Francisco M. Gonzalez-Longatt

April 2007
1.025%4 pu 3
-0.1672 Deg
200.0000 MW
40.0000 Mvar

200 MW
40 Mvar

Physical System: Power Grid
Network



&JTGERS Our attack focuses on the interface

Between the PLC and. it’s own 1/O

Modules (i.e., the interface between

BaCk to ICS Example--- The PLC and the underly physi
System)

400 MW
200 Mvar

217.29 MW
195.21 Mvar

0.0000 Deg
1.0500 pu

-2.7361 Deg
1 0.9704 pu

Stuxnet attacked these
two communication
channels

FGL's 3-bus Test System
Developed by Francisco M. Gonzalez-Longatt
April 2007

1.0254 pu
-0.1672 Deg

200.0000 MW
40.0000 Mvar
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Physical System: Power Grid
Network
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Implementing Harvey:
Device Selection and Specification

g =
e Allen Bradley d
CompactlLogix L1 sion Mizizizes
wow ma (G ko e

e Based on Texas

Instruments Stellaris
LM3S2793
Microcontroller

— Arm Cortex-M3 ISA
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CompactLogix L1 PLC

MT11-4M
SN BN E
REILEE
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@ Aen-Badley Compact
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CompactLogix L1 PLC

g =
@ Alten-Bradley CompactLog. R
i terl bl . o g > 16 Bit Digital Input

e High Value (1) ~ 24V DC
e Low Value (0) ~ 8V DC

PRGN =0

OO Ne R W N - O
5]

e
.n
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CompactLogix L1 PLC

@ Alen-Bradley
LU ] -

Az LNt
w w - e " O

> 16 Bit Digital Output

ox - 2

e High Value (1) ~ 24V DC
e Low Value (0) ~ 8V DC

0
1"
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5

SO O A W R — O [

‘el sl
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Analyzing the CompactLogix L1 Firmware
Update Files

e There have been prior works that reverse engineer the firmware
update procedure of different Allen Bradley PLCs

— Although these works simply bricked the PLCs, they did provide a means of
updating the firmware

e Although we spent a lot of time analyzing the firmware update
files, we eventually found that analyzing the dumped memory was
more efficient for our goals

AllenBradleyFirmware Compacktlogix L1 1769-L1y 26.013 FirmwareKit ControlFLASH 0001 OO00OE 0099

& '@ ‘9 &) & @

PN-31114%.nvs PN-311145.RES PN-311150.bin PN-311151.bin PN-311152.der PN-311153.der
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JTAG Debugging

e Joint Test Action Group

ﬂ J-Link Commander

(JTAG) standard was
designed to assist with g
device, board, and
system testing,
diagnosis and fault
isolation

e Usually one of the first 8
approaches used for
reverse engineering
efforts
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Memory Analysis with JTAG
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Memory Analysis with JTAG

Used JTAG interface to
dump memory for code
disassembly

Used Tl Stellaris LM3S52793
data sheet to find memory
layout and built-in ROM
functions

Start End Description
0x00000000 | 0xO001FFFF | On-chip Flash
0x00020000 | OxOOFFFFFF | Reserved
0x01000000 Ox1FFFFFFF ROM
0x20000000 | 0x2000FFFF | On-chip SRAM
0x20010000 0x21FFFFFF Reserved
0x22000000 0x221FFFFF Bit-band alias of

SRAM
0x4005C000 | 0x4005CFFF | GPIO Port E (AHB)
0x4005D000 | 0x4005DFFF | GPIO Port F (AHB)
0x4005E000 0x4005EFFF GPIO Port H (AHB)
0x4005F000 0x4005FFFF GPIO Port G (AHB)
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Static Memory Analysis

e We followed the boot
sequence to determine
the control flow of the
program

Vectors DCD __initial_sp ; Top of Stack
[olal Reset_Handler ; Reset Handler

[ ) We u Se d t h e n Ot i O n DCD NMI_Handler : NMI Handler

[olal HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler

that for Cortex-M3 S oS
processors, the Reset
Handler is located at

address 0x0000004
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Following the Boot Sequence with IDA Pro

Flash Memory
Ox00000004 | s =

Ox0000Q0E3 == sub_B8

sub_51E

LDR RO, loc_120
LDR R1,

STR RO, [R1)

LDR rl, [RrO]

MOV P, Rl

LDR RO, [RO, #(loc_4004 0x4000)1]
BX RO ; loc_E378

* |DA Pro is a multi-processor
disassembler and debugger

* We took the extracted
firmware and disassembled
it using IDA Pro

......

0x00000000 = Address of SP
0x20000000 = Start of SRAM
0x20000A7C = 777

Loc_BE:
R3 <= *(RO) + 4 = *(0)+4 = 20000B3C +4 = 20000840
*( R1)+4 =20000B3C+4 =20000B40 <= 20000840
R1 < R2 ? == 20000000 < 20000A7C > Always false?

RO=0
R2 = 0x20000F48

*(R1}+4=20000840 <= 0
R1 < R2? == 20000000 < 20000B40 -->Always false?

RO = OxEQOEDO8

R1 = 0x20000000

*(EODEDOS) <= 0x20000000 {Cannot
access EOOEDOS)

LR <= LR OR 0x20000000 == 200000E6
Branch to LR (200000E6)
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Following the Boot Sequence with IDA Pro

Flash Memor p—
0>c00000004|
sub B8 1 ———  (x20000000 = Start of SRAM

Ox000000E3 =t sub_BE —> MOV RO, # 0x20000A7C = 777

BL sub_51E LDR R1,

LDR ﬂ: loc_120 LR R2, =0x

LDR R1, =0xEQDODEDC

STR RO, [R1) I‘

LDR rl, [ROD] '

MOV 5P, RI [P §

LDR RO, [RO, #(loc_4004 0x4000)1]

BY RO ; loc_E378 Loc_BE:

DR.| 1, [RO], #4 = R3<=*(R0O) + 4 = *(0)+4 = 20000B3C +4 = 20000840

*( R1)+4 =20000B83C+4 =20000B40 <= 20000B40

0 R1< R2 ? == 20000000 < 20000A7C —> Always false?
|
'J
* IDA Pro is a multi-processor s @ [ oo
disassembler and debugger —vy
e We took the extracted =50
firmware and disassembled st s, el 0 € 30000840 -l alse?
it using IDA Pro _,] ce
et KD f RO = OxEOQEDOS
R ———— R1 = 0x20000000

*(EODEDOS) <= 0x20000000 {Cannot
| - access EDOEDOS)
. B LR <= LR OR 0x20000000 == 200000E6
Branch to LR (200000E6)
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Static/Dynamic Analysis for 1/O Interception

e Couldn’t analyze every B —
possible path to determine e Witiiiiie
|/O interception point - = Priiiiiiin

e Halted the CPU (via JTAG)
during slow boot-up LED

sequence and stepped
through execution to see
how LEDs values were being
updated

— Memory addresses of
LED values led us to ISR’s
responsible for
forwarding GPIO values
to and from PLCs
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Static/Dynamic Analysis for 1/O Interception

e Couldn’t analyze every
possible path to determine
|/O interception point

e Halted the CPU (via JTAG)
during slow boot-up LED
sequence and stepped
through execution to see
how LEDs values were being
updated

— Memory addresses of
LED values led us to ISR’s
responsible for
forwarding GPIO values
to and from PLCs
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Modified GPIO-Output Update ISR

Section of code that
stores value from
app. layer in registers
associated with LED
Output

==

[N

e 2]

Function Entry m—>uedesccriooupucrrontionry

g | LR
MOVS

MOVS
LDR

LDR

Address of mem. value

sl e s ien e s B s
N O LA LN O Ln

PetdeersREddO W HEd to intercept the

o momm olp
PN = N Jsgon
R S

Loop that

changes

value from Reaea—

memory to | [ i
ANDS.W R3S,

GPIO format | o =
2SBS.W RS
LSLE.W R35
ERE Fl,
ADDS R2
B lo

Control flow at the po|njwhesatheyalye

From
whosg¢ value is manipt

emory is store ijbﬁH%F?Wﬁon

lgtathinsthedRRoRP

and run code that has
has been injected. In
this case, we store a

Ul

omaskaNaug to R
talcbhbned the output
Malufesraddednoh
Gatl to the

sulbsagpents

Instructions.
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Modified GPIO-Input Update ISR

ktl =

UpdateMemoryFromGPIO

PUSH {R3-R3, LR}

MOVS RO, #0

MOVS R4, RO

LDR.W RO, =0x4005D3FC ; GPIOQ Pert F
LDR RO, [RO]

LSLS RO, RO, #8

MOVS R3, RO

LDR.W RO, =0x4005C3FC ; GPIO Port E
LDR RO, [RO]

A ———(—

LDR.W RO, =LED_Input<€
STRH R3, [RO]

UXTH R3, RS

MVNS RO, RS

MOVE R4, RO

LDR.W RZ2, =unk_200032F4
LDR.W R1, =byte_20003700
MOVS RO, R4

UXTH RO, RO

EL sub_Z000Z1BA

MOVS R3, RO

POP {RO,R4,R5,PC}

P>

PUSH
MOV
MOVS
LDE.W
LDE
LSLS
MOVS
LDE.W
LDE

=
g

{R3-R5,LR}

RO, #0

R4, RO

RO, =0x40[

RO, [RO]

RO, RO, #8

R3, RO

RO, =0x4005C3FC

RO, [RO]

loc_2000164E

We have a similar
implementation for the

input values being read from
the GPIO ports. This
implementation is simpler

as we just modify the values
being read from the GPIO ports

!

il e =

loc_2000164E

MOVS R53, #0xFFFFFFFC
B loc_20001E30
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Example Attack Scenario

e Simple logic system:

— Ifinput ports 0 and 1 are
high, then output port 1 is
high (AND gate)

— Ifinput port O is low or input
port 1 is low, then output
port O is high (NOR gate)

e This system can represent a
safety condition

— We can only start a process
(output port 1) if two safety
conditions (input port 0 and
input port 1) are met.
Otherwise, we are in an idle
position (output 0)

Input O

Input 1

Input O

Input 1

43/71

Output 1

Output O



RUTGERS

Simple Ladder Logic Program

e Ladder logic is a graphical

programrn.lng Ian.guage L_ISEd to B MainProgram - MainRoutine ol| 3| =8|
program_5|mple circuit diagrams of “ o o] w | L
relay logic hardware
. Local1:.Data.0 Local1:l.Data.1 Local:1:0.Data.1 it
e The system on the right represents 0 B ot S
the aforementioned AND and NOR |
Local1:1.Data.0 Local1:0.Data.0 1
gates 1 3/E 2
e The programming/ monitoring Local:1:LData." I
software, RSLogix 5000, is considered .
our HMI | |
(End)
— LEDs and HMI read the updated | ad
., ] MainRoutine
values from the same addresses | iizerogram | : :
in memory
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Spoofing Inputs

Input O

Output 1
Input 1
Input O

Output O
Input 1

e The LEDs/HMI Indicators show that
both input ports 0 and 1 are high, so
output port 1 is high according to
our ladder logic program

e There is no input connected! Output
port 0 should be high and port 1
should be low!
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Spoofing Outputs

’ Similary, the _
_ . ““Nvoltage for output

; FR————>°8 _~ port 1is read as
coopistpIE. | N <55 7 | high (24 v DC)

wahlé &rows a despite the

854VDC) i O T _indicator showing
: : a low voltage
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More Advanced Code Injection: PID Controller
Sample PID Code (collapsed)

e Compiled an open-source PID

PUSH {R4-RE}
(collapsed code)

controller code to determine space eonicoses toms " oeageation wieh vindup guasan
constraints -

— Did not have access to S S PV
(collapsed code)
. . B loc_BIF
proprietary PID ladder logic
instruction e l
B loc_B81F2
— Code was not optimized/stripped
) ) R e Itatrerowindup—guasd
— PID implementation may only
- — 2 2
I m p I e me nt P O r PI cases LDR ?.3,=prev_erro: ;differentiation
({cellapsed code)
D.W R4, [RT#0x28]
LD F proporti L g ling
(collapsed _:_l!
3 HD - ?;nllapsgguiggi:
— Proporbonal |ntegeal Denvative —— LoR R3,=integral gain
FD ? i LDRD.W f.D,f.:_, (R3]
Process variabie 7 Teotiapeca cong
PV Data Type ? 2L W1dE3
Tletlallk ? [c:llaps d :od )
Cortral vanable 7 ]EE;;n p d'c:ds e
CV Data Type 2 BL w1df3
HD MES:IET Lf.']ﬂ T" IEE.ZMQPS. d,:zgliml ;summation of terms(control=p+i+d)
Inkald b 7 [cfllaps d code)
I”huld_"'rl'ahe 7 ]Ez:llaps-d de) = ° - B
Setpcunl 77' FOF [R4-RT,FC)
Process Yariable i
Dutput 2 £r

Ladder Logic Instruction 47/71
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Assessing Reusable Memory for Malware Injection

e Manually inspected code to
determine “available” and
“reusable” memory

— “Reusable”: code that is
inaccessible due to the
control flow of the code and
can be overwritten

— “Available”: areas of memory
that are not being used

e Available and reusable memory
were sufficient enough to
implement a PID attack code

— PID attack code could be much leaner

— Built-in PID instructions are

significantly smaller than attack code

60000

50000

B
=)
(=]
o
o

30000

20000

Code Size (Bytes)

10000

228

92

24

1932

PID (DINT) PID (REAL) Relay Logic

Attack Code

M Instruction/Code

PID Attack Code

Unused Memory
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1970

54063

Available
Memory
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Evaluation on Smart Grid Test Bed

7 9
( ‘/\ 2I 5 3
Gen 2 Gen 3
Substation 2
Substation 1
Substation 3
' §
IEEE 9 Bus
Power System
Control A
Gen 1 oniro rea
System Master SCADA
Operator Control Center

Grid Control
Applications

@ State Estimation

@ Load Shedding
@ Wide Area Monitoring and Control

@ Event Analysis and Disturbance Recording

Power System Control Area
Control Plane

C

Main Control Unith

1
1 -
]

Substation 3
Router

Substation 1
Router

Ethernet

Communicatio n
A Fiber Optic

Link

Substation 2
Router

PLC
Central Controller

T MATLAB

OPCUA i
Middleware

Information Exchange

SCADA PDC

HIL
Simulation

IED 3
Substation - + Substation
Measurement Measurement

IED 2
Substation
Measurement
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Benign and Malicious Physical Models

Benign Optimal Power Flow Malicious Optimal Power Flow

(bOPF) (mOPF)

e Uses optimal power flow e Modified optimal power
equations of power grid to flow that maximizes cost
minimize cost while while disregarding safety
ensuring safe operation, constraints, i.e.,

l.e.,

max c(x,u)
u

min c(x
lin - c(x, u) st. P8P =Y |Vi||Vil(Gix cos 8 + By sin 0
k

S.t. Plfg —Pil = Z \Vi|[Vi| (Gix cos 0 + Bjx sin 0y
k 05— 0l = Y [Vil|Vi|(Gik sin 0% — Bix cos 0;)

Qf — 0 = Y |Vil|Vi|(Gir sin®y — By cos ) keC
keC Vi,je N,Vle G,VkeC

Plggplgmax
Vi,jeEN,VIe€ G, VkeC
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PID Controllers for Inner Loops of OPF Models

e Calculated commands of
OPF models are used as set-
points to be maintained by
inner-loop proportional-
integral-derivative (PID)
controllers

e Harvey maintains an benign
PID controller and
associated set of variables
along with a malicious PID
controller

—Setpoint

» P K e(r)

| K!.je(r)dr

Process

— Output —»

> D K&,M

dt
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Steady-State System Malicious Attack:

Actual Power System Measurements

Repeated heavy load circuit

breaker open/close
triggering without loss of
power system stability

— Transmission line is

opened/closed several

times via a circuit
breaker

Although attack resulted in

the system exceeding

permissible limits, stability

was maintained

o 1 U e 451 P
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x ]
= = P
> soais = am
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@ £
= man <
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Steady-State System Malicious Attack:
Faked Measurements

Generator 1 & 2 - Frequency
60.2 T T

e Harvey ran parallel benign model 3 {n . -
to generate fake legitimate- a | i """"" — """" """" """" . """" |
looking sensor measurementsto & .| e
O pe rato rS 150 1 1 : Genera!::l 1&2 -'TerminallVOIIage '

e Such an attack caused minor = 100
perturbations due to equipment B e e ““““ i s s wi s S s
Operational nOise 0 | | | Genel;ton&21-ActweiF'ower |

— They are shown as minor E . -
perturbations within safety | mjimsismimiominminmvsiombus
imits ! s
— Such minor perturbations are Timels)

normally observed
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Adversary-Optimal Control Attack:

Actual Power System Measurements

Optimal malicious attack
using real-world control
algorithms, mOPF

— Remove safety margin
conditions

— Replace cost minimization
with maximization

— Predefined stealthy
conditions, e.g., “no power

generator disconnect from the

rest of the power grid”

— Set nominal frequency
reference to 62 Hz
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Adversary-Optimal Control Attack:

Faked Measurements

e Harvey ran benign OPF in
parallel and sent fabricated
measurements back to HMI

e Similar perturbations were
observed

Current (A) Frequency (Hz)

Active Power (MW)
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Limitations

e Current implementation relies on JTAG implantation

e Accuracy of the physical models are limited to the amount of
memory required by the implementations

e For adistributed attack, PLCs cannot rely on network
communication
— Communication relies on sensing and actuating, e.g., side-channel attack
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Possible Mitigation Solutions for Harvey

e Remote-attestation
— Verifier to check the software integrity of the system

e Secure boot
— Trusted platform module to verify by the device itself

e External bump-in-the-wire between PLC and physical plant
— Monitor sensor-to-PLC and PLC-to-actuator data streams
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Responsible Disclosure

e We notified Allen Bradley of the possible repercussions of
previously demonstrated firmware vulnerabilities

e The company allowed us to publish the details of our work in the
Network and Distributed System Symposium (NDSS) 2017
conference
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VERIFICATION OF CYBER-PHYSICAL
MODELS
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Hybrid Systems

Hybrid automata: Thermostat example

=24

x=25

*  Control temperature by
turning a heater On and Off

*  Hybrid state:
(x,5) €[24, 25] x {On, Of}

25

LE)

24 L

of f I Tme [(seconds)

state

Tme [(seconds)

60/71



RUTGERS

Hybrid Verification of Cyber-Physical Systems
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Verifying the Transient Stability of Single-Machine
Infinite-Bus (SMIB) System

Using dLlybH'd Verification: - Mhsseseseany gt _ s - b - : A
W $- W

e Two d|rs,gr.,§,ﬁ states: faulted or nqm;iﬁ@fed :

« Several simplifications made for verification Hybrid Invariant Region
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Final SMIB Hybrid Program

init & [{ctrl: l.?!tf”?i&H Hel(req)

Pe._rmr
ABmax = T— 0O Asin(0) = Pfﬁm /\cos(8) = -\/l - P;i .

ctrl = (a:= Pyy — Pe ax Sin(0))

plant =0 = 0,0 = a.sin® = wcosO,cos®’ = —wsind

H =sin?0+cos?0 =1

req =0 < 0y
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Current and Future Work:
Extending SMIB Model

e Extending SMIB model
to include model for
governor of hydro
power unit 1% Servo
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Current and Future Work:
Cyber-Physical Control Flow Integrity
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Current and Future Work:
Cyber-Physical Control Flow Integrity
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Current and Future Work:
Cyber-Physical Control Flow Integrity

Physics
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Cyber-Physical Control Flow Integrity
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Conclusion

e We presented Harvey, a PLC rootkit that implements a physics-
aware man-in-the-middle attack against cyber-physical control
systems

e Harvey damages the underlying physical system while providing the
operators with the exact view of the system that they would expect
to see following their commands

e We presented device-oriented verification of cyber-physical
systems with a focus on the electric power grid using differential
dynamic logic

Thank You!

Luis Garcia
E-mail: l.garcia2 @rutgers.edu
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