

Leveraging Physical Models for Attacking and Defending PLCs

Luis Garcia 4N6 Cyber Security & Forensics Research Lab ECE Department Rutgers University

Outline

- Background
- Harvey: Model-Aware Rootkit
 - System Model
 - Physics-Awareness
 - Implementation and Evaluation
- Device-Oriented Verification of CPS
- Conclusions

Programmable Logic Controllers (PLCs) and Industrial Control Systems (ICSs)

What is a Programmable Logic Controller(PLC)?

 The interface between cyber and physical components in many CPS applications

What is a Programmable Logic Controller(PLC)?

- The interface between cyber and physical components in many CPS applications
- Contain simple logic code that is easy to verify

What is a Programmable Logic Controller(PLC)?

- The interface between cyber and physical components in many CPS applications
- Contain simple logic code that is easy to verify
- Typically the target in CPS attacks
 - E.g., Stuxnet

PLC Architecture

In this example, the opening/closing of a circuit breaker in this scenario is controlled by a PLC

A programmer will be allowed to change The PLC configuration as well as the Control logic of the system

Network

Previous Attacks on PLC's: Stuxnet

- Advanced malware worm that attacked Siemens S7 PLC's and WinCC systems
- Targeted high frequency drives controlling centrifuges
- Caused billions of dollars in damages

Going back to our Example ICS...

Network

Stuxnet's PLC Attack Overview

Stuxnet's PLC Attack Overview

Programmer's PC

Stuxnet's PLC Attack Overview

Programmer's PC

Prior Efforts to Mitigate Attacks like Stuxnet

- Typically offline, passive solutions
- External solutions for PLCs

Hey, My Malware Knows Physics! Attacking PLCs with Physical Model Aware Rootkit

Luis Garcia, Saman Zonouz

ECE Department Rutgers University

Ferdinand Brasser, Ahmad-Reza Sadeghi System Security Lab Technische Universität Darmstadt

Mehmet H. Cintuglu, Osama Mohammed

ECE Department Florida International University

NDSS 2017

Harvey: Model-Aware Rootkit

- A rootkit that takes into account the physical topology of the ICS
- Model
 - Uses physical models to optimize control commands for an adversarial objective function
- PLC infection: compromising the PLC's firmware
 - Utilize the firmware update mechanism to replace firmware over the network
 - Local firmware modifications, e.g., SD card or JTAG implantation
 - Run-time attacks, e.g., network exploits or remote code execution vulnerabilities (FrostyURL)

System Model

Adversary Model

• Stealthiness

Adversary Model

- Stealthiness
- PLC-only attack

Adversary Model

- Stealthiness
- PLC-only attack
- Physical model extraction

Physics-Awareness: 2-Way Data Manipulation

RUTGERS

Back to ICS Example...

Back to ICS Example...

Our attack focuses on the interface Between the PLC and it's own I/O Modules (i.e., the interface between The PLC and the underly physical System)

Network

Implementing Harvey: Device Selection and Specification

- Allen Bradley
 CompactLogix L1
- Based on Texas
 Instruments Stellaris
 LM3S2793
 Microcontroller
 - Arm Cortex-M3 ISA

CompactLogix L1 PLC

CompactLogix L1 PLC

- High Value (1) ~ 24 V DC
- Low Value (0) ~ 8 V DC

CompactLogix L1 PLC

- High Value (1) ~ 24 V DC
- Low Value (0) ~ 8 V DC

Analyzing the CompactLogix L1 Firmware Update Files

- There have been prior works that reverse engineer the firmware update procedure of different Allen Bradley PLCs
 - Although these works simply bricked the PLCs, they did provide a means of updating the firmware
- Although we spent a lot of time analyzing the firmware update files, we eventually found that analyzing the dumped memory was more efficient for our goals

JTAG Debugging

- Joint Test Action Group (JTAG) standard was designed to assist with device, board, and system testing, diagnosis and fault isolation
- Usually one of the first approaches used for reverse engineering efforts

Memory Analysis with JTAG

Memory Analysis with JTAG

- Used JTAG interface to dump memory for code disassembly
- Used TI Stellaris LM3S2793 data sheet to find memory layout and built-in ROM functions

Static Memory Analysis

- We followed the boot sequence to determine the control flow of the program
- We used the notion that for Cortex-M3 processors, the Reset Handler is located at address 0x000004

Vectors	DCD	initial_sp	; Top of Stack
	DCD	Reset_Handler	; Reset Handler
	DCD	NMI_Handler	; NMI Handler
	DCD	HardFault_Handler	; Hard Fault Handler
	DCD	MemManage_Handler	; MPU Fault Handler
	DCD	BusFault_Handler	; Bus Fault Handler
	DCD	UsageFault Handler	; Usage Fault Handler
	[more vectors]		

Following the Boot Sequence with IDA Pro

RUTGERS

Following the Boot Sequence with IDA Pro

RUTGERS

•

•

38/71

Static/Dynamic Analysis for I/O Interception

- Couldn't analyze every possible path to determine I/O interception point
- Halted the CPU (via JTAG) during slow boot-up LED sequence and stepped through execution to see how LEDs values were being updated
 - Memory addresses of LED values led us to ISR's responsible for forwarding GPIO values to and from PLCs

Static/Dynamic Analysis for I/O Interception

- Couldn't analyze every possible path to determine I/O interception point
- Halted the CPU (via JTAG) during slow boot-up LED sequence and stepped through execution to see how LEDs values were being updated
 - Memory addresses of LED values led us to ISR's responsible for forwarding GPIO values to and from PLCs

40/71

Modified GPIO-Output Update ISR

Example Attack Scenario

- Simple logic system:
 - If input ports 0 and 1 are high, then output port 1 is high (AND gate)
 - If input port 0 is low or input port 1 is low, then output port 0 is high (NOR gate)
- This system can represent a safety condition
 - We can only start a process (output port 1) if two safety conditions (input port 0 and input port 1) are met.
 Otherwise, we are in an idle position (output 0)

Simple Ladder Logic Program

- Ladder logic is a graphical programming language used to program simple circuit diagrams of relay logic hardware
- The system on the right represents the aforementioned AND and NOR gates
- The programming/ monitoring software, RSLogix 5000, is considered our HMI
 - LEDs and HMI read the updated values from the same addresses in memory

Spoofing Inputs

- The LEDs/HMI Indicators show that both input ports 0 and 1 are high, so output port 1 is high according to our ladder logic program
- There is no input connected! Output port 0 should be high and port 1 should be low!

Spoofing Outputs

Hothrevienstthe tabs/Wevlattach invlidencerter to sludpustapbigH0, aabliet fshrows a buv/puct/paget 0 (8.54 V DC)

Similary, the voltage for output port 1 is read as high (24 V DC) despite the indicator showing a low voltage

More Advanced Code Injection: PID Controller

- Compiled an open-source PID controller code to determine space constraints
 - Did not have access to proprietary PID ladder logic instruction
 - Code was not optimized/stripped
 - PID implementation may only implement P or PI cases

Proportional Integral [Derivative
PID	?
Process variable	?
PV Data Type	?
Tieback	?
Control variable	?
CV Data Type	?
PID Master Loop	?
Inhold bit	?
Inhold Value	?
Setpoint	77
Process Variable	22
Output %	22

Sample PID Code (collapsed) pid_update PUSH {R4-R6} (collapsed code) STRD.W R3, R4, [R7,#0x30] (collapsed code) ; integration with windup guarding BEO loc_81D0 LDR R3,=int error ; int error >= windup guard (collapsed code) loc_81F2 R3,=int_error ;int_error-=windup_guard (collapsed code) loc 81F2 R3,=windup_guard LDR ;int_error>windup_guard ; int error=windup guard (collapsed code) R3,=prev error ; differentiation LDR (collapsed code) STRD.W R3,R4,[R7#0x28] LDR R3,=proportional_gain ;scaling (collapsed code) BL _muldf3 (collapsed code) LDR R3,=integral gain LDRD.W R0,R1,[R3] LDR R3,=int_error (collapsed code) BT. muldf3 (collapsed code) LDR R3,=derivative gain (collapsed code) BT. muldf3 (collapsed code) R2,=control LDR ;summation of terms(control=p+i+d) (collapsed code) LDR R2,=prev_error ;prev_error=curr_error (collapsed code) POP (R4-R7, PC)

Ladder Logic Instruction

Assessing Reusable Memory for Malware Injection

- Manually inspected code to determine "available" and "reusable" memory
 - "Reusable": code that is inaccessible due to the control flow of the code and can be overwritten
 - "Available": areas of memory that are not being used
- Available and reusable memory were sufficient enough to implement a PID attack code
 - PID attack code could be much leaner
 - Built-in PID instructions are significantly smaller than attack code

Evaluation on Smart Grid Test Bed

Benign and Malicious Physical Models

Benign Optimal Power Flow (bOPF)

 Uses optimal power flow equations of power grid to minimize cost while ensuring safe operation, i.e.,

$$\begin{split} \min_{u} & c(x,u) \\ \text{s.t.} & P_{i}^{g} - P_{i}^{l} = \sum_{k} |V_{i}||V_{k}| (G_{ik}\cos\theta_{ik} + B_{ik}\sin\theta_{ik}) \\ & Q_{i}^{g} - Q_{i}^{l} = \sum_{k \in C} |V_{i}||V_{k}| (G_{ik}\sin\theta_{ik} - B_{ik}\cos\theta_{ik}) \\ & P_{l}^{g} \leq P_{l}^{gmax} \\ & \forall i, j \in N, \ \forall l \in G, \ \forall k \in C \end{split}$$

Malicious Optimal Power Flow (mOPF)

 Modified optimal power flow that maximizes cost while disregarding safety constraints, i.e.,

$$\begin{aligned} \max_{u} \quad c(x,u) \\ \text{s.t.} \quad P_{i}^{g} - P_{i}^{l} &= \sum_{k} |V_{i}| |V_{k}| (G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) \\ Q_{i}^{g} - Q_{i}^{l} &= \sum_{k \in C} |V_{i}| |V_{k}| (G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik}) \\ \forall i, j \in N, \forall l \in G, \forall k \in C \end{aligned}$$

PID Controllers for Inner Loops of OPF Models

- Calculated commands of OPF models are used as setpoints to be maintained by inner-loop proportionalintegral-derivative (PID) controllers
- Harvey maintains an benign PID controller and associated set of variables along with a malicious PID controller

Steady-State System Malicious Attack: Actual Power System Measurements

- Repeated heavy load circuit breaker open/close triggering without loss of power system stability
 - Transmission line is opened/closed several times via a circuit breaker
- Although attack resulted in the system exceeding permissible limits, stability was maintained

Rutgers

Steady-State System Malicious Attack: Faked Measurements

- Harvey ran parallel benign model to generate fake legitimatelooking sensor measurements to operators
- Such an attack caused minor perturbations due to equipment operational noise
 - They are shown as minor perturbations within safety limits
 - Such minor perturbations are normally observed

Adversary-Optimal Control Attack: Actual Power System Measurements

- Optimal malicious attack using real-world control algorithms, mOPF
 - Remove safety margin conditions
 - Replace cost minimization with maximization
 - Predefined stealthy conditions, e.g., "no power generator disconnect from the rest of the power grid"
 - Set nominal frequency reference to 62 Hz

Rutgers

Adversary-Optimal Control Attack: Faked Measurements

- Harvey ran benign OPF in parallel and sent fabricated measurements back to HMI
- Similar perturbations were observed

Limitations

- Current implementation relies on JTAG implantation
- Accuracy of the physical models are limited to the amount of memory required by the implementations
- For a distributed attack, PLCs cannot rely on network communication
 - Communication relies on sensing and actuating, e.g., side-channel attack

Possible Mitigation Solutions for Harvey

- Remote-attestation
 - Verifier to check the software integrity of the system
- Secure boot

RUTGERS

- Trusted platform module to verify by the device itself
- External bump-in-the-wire between PLC and physical plant
 - Monitor sensor-to-PLC and PLC-to-actuator data streams

Responsible Disclosure

- We notified Allen Bradley of the possible repercussions of previously demonstrated firmware vulnerabilities
- The company allowed us to publish the details of our work in the Network and Distributed System Symposium (NDSS) 2017 conference

VERIFICATION OF CYBER-PHYSICAL MODELS

Hybrid Systems

Hybrid automata: Thermostat example

Hybrid Verification of Cyber-Physical Systems

Verifying the Transient Stability of Single-Machine Infinite-Bus (SMIB) System

Final SMIB Hybrid Program

init \Rightarrow [{*ctrl*; *plant* &*H*}*](*req*) $init \equiv P_M = 1 \wedge P_{e,max} = \frac{3}{2} \wedge \omega = 0 \wedge \theta = \arcsin(\frac{P_M}{P_{e,max}})$ $\wedge \theta_{max} = \pi - \theta \wedge \sin(\theta) = \frac{P_M}{P_{e,max}} \wedge \cos(\theta) = \sqrt{1 - \frac{P_m^2}{P_{e,max}^2}}$ $\wedge c = 2P_M \theta_{max} - 2P_{e,max} \cos(\theta)$ $ctrl \equiv (a := P_M - P_{e,max} \sin(\theta))$ $plant \equiv \theta' = \omega, \omega' = a, \sin \theta' = \omega \cos \theta, \cos \theta' = -\omega \sin \theta$ $H \equiv \sin^2 \theta + \cos^2 \theta = 1$ $req \equiv \theta \leq \theta_{max}$

Current and Future Work: Extending SMIB Model

 Extending SMIB model to include model for governor of hydro power unit

^{64/71}

Conclusion

- We presented Harvey, a PLC rootkit that implements a physicsaware man-in-the-middle attack against cyber-physical control systems
- Harvey damages the underlying physical system while providing the operators with the exact view of the system that they would expect to see following their commands
- We presented device-oriented verification of cyber-physical systems with a focus on the electric power grid using differential dynamic logic

Thank You!

Luis Garcia E-mail: l.garcia2@rutgers.edu

List of Publications

• Journal Articles:

GERS

- Katherine R. Davis, Charles M. Davis, Saman A. Zonouz, Rakesh B. Bobba, Robin Berthier, Luis Garcia, Peter W. Sauer, A Cyber-Physical Modeling and Assessment Framework for Power Grid Infrastructures, IEEE Transactions on Smart Grid, 2015
- Conference/Workshop Articles:
 - Luis Garcia, Henry Senyondo, Stephen McLaughlin, Saman Zonouz, Covert Channel Communication Through Physical Interdependencies in Cyber-Physical Infrastructures, IEEE SmartGridComm, 2014
 - Saman Zonouz, Luis Garcia, TMQ: Threat Model Quantification in Smart Grid Critical Infrastructures, IEEE SmartGridComm, 2014
 - Gabriel Salles-Loustau, Luis Garcia, Kaustubh Joshi, Saman Zonouz, Swirls: Context-Aware Information-Flow-Based Micro-Security Perimeters for Mobile Devices, IEEE/FIP International Conference on Dependable Systems and Networks (DSN), 2016
 - Luis Garcia, Dong Wei, Leandro Pfleger de Aguiar, Saman Zonouz, Detecting PLC Control Corruption via On-Device Runtime Verification, IEEE Resilience Week (RWS), 2016
 - Luis Garcia, Ferdinand Brasser, Mehmet Hazar, Osama Mohammed, Ahmad-Reza Sadeghi, Saman Zonouz, Hey, My Malware Knows Physics!
 Attacking PLCs with Physical Model Aware Rootkit, Network and Distributed System Security Symposium (NDSS), 2017
 - Luis Garcia, Khalil Ghorbal, Saman Zonouz, Transient Stability of Power Systems: A Case Study in Formal Verification, ACM International Conference on Hybrid Systems: Computation and Control (HSCC), 2017
 70/71

