

Seminar Series

Cybersecurity for IoT to Nuclear

Fred Cohn, Program Director

Property of Schneider Electric

Who Am I?

- Program Director, Schneider Electric Product Security Office
 - Cybersecurity Strategy
 - Process (SDL) Deployment and Governance
 - PSIRT Incident Response, Vulnerability Management, Threat Intelligence
- Previous background:
 - Industrial Control, Programmable Logic Controllers, Industrial Networking
- How did I get involved in security?
 - A funny thing happened . . .

Who is Schneider Electric?

- Schneider Electric in figures:
 - ~€25 billion in sales in FY2016
 - 144,000+ employees in more than 100 countries.
 - ~5% of revenues devoted to R&D
- About our Company:
- Schneider Electric is the <u>global specialist in energy management and</u> <u>automation</u>. With revenues of ~€25 billion in FY2016, our 144,000+ employees serve customers in over 100 countries, helping them to manage their energy and process in ways that are safe, reliable, efficient and sustainable. From the <u>simplest of switches to complex operational systems</u>, our technology, software and services improve the way our customers manage and automate their operations. Our connected technologies reshape industries, transform cities and enrich lives.

Schneider Electric Offers

- Data Centers:
 - UPS
 - Power Management
 - Cooling
- Building Management:
 - Temperature Control
 - Access Control
 - Metering and Protection

Merlin Gerin

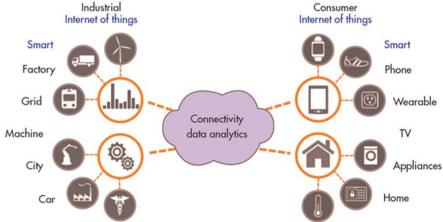
- Protective Relays
- Substation Controllers
- Transformers
- Industrial Control
 - Sensors and Actuators
 - Variable Speed Drives and Motor Control
 - PLC's, Motion Controllers, and RTUs
 - DCS
 - Safety PLC and Shutdown Systems

IT vs. OT – Schneider Electric Lives in Both Worlds

- □ OT = Operations Technology
- Simple answer:
 - IT controls electrons = bits & bytes
 - OT controls molecules = things
- □ More complicated answer:
 - OT leverages IT technologies; Ethernet, WiFi & Internet stacks, to connect intelligent devices, controllers, and software:
 - Monitor
 - Alarm
 - Control
 - Protect
 - Control vs. Data Centric

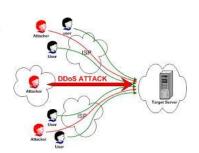
OT is a "Soft" Target for Cyber-based Attackers

- Why OT is a soft target?
 - Older systems; insecure by design
 - Owners don't have same cybersec skills
 - OT system lifecycle 5-10x longer than IT system lifecycle
 - Shared systems tend to share passwords
 - Naivete! "We aren't threatened! Who would attack us? What are they going to do...change the building temperature? Security by Obscurity!"
 - Systems tend to remain unpatched too risky to patch!
- Good news, if there is any?
 - System attack requires much more process knowledge than typical IT system
- Systems are designed to fail to a safe condition
 Property of Schneider Electric | Page 6



IoT for OT = IIOT

- Industrial IoT applying the concept of IoT to Industrial/Commercial Control:
 - Cloud-based Building Management System
 - Facility Monitoring
 - Remote Maintenance
 - Remote Asset Management
 - ADR Automated Demand Response
 - WAGES tracking
 - Remote robotic surgery Yikes!



Risks of IIoT

Ì

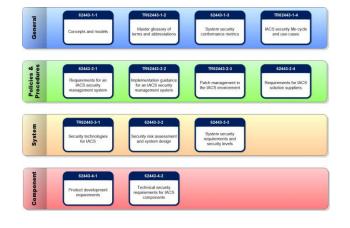
- Personal data can be compromised
- Equipment can be attacked and essential functions can be interrupted
- Data can be manipulated or modified
- Equipment can be damaged!
- Life safety can be impacted!

Schneider's R&D Approach – It's a Journey

- Standards-based development practices
- Consistency Rules
- Bricks and Platforms
- Innovative Designs Suited for Our Markets
- Research to apply IT Security Practices/Technologies
 to OT environments

Standards Based Development Approach

- Corporate Policy that all R&D Projects must follow SDL:
 - Initially based on ISO 27034, while a few groups leveraged ISASecure
 - Migrating to IEC 62443-4-1 for all R&D
 - ISO 30111 for Vulnerability Management
- SE IT organization embracing the methodology
- Some R&D departments are SDLA certified



IEC 62443-4-1 Practices

- Security Management
- Security Requirements
- Secure by Design
- Secure Implementation
- Secure Verification and Validation
- Defect Management
- Security Update Management
- Security Guidelines

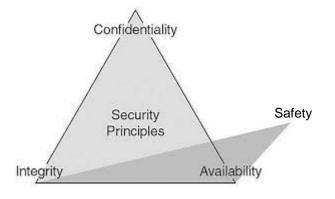
Life Is Or

Consistency Rules

- Rules that govern technical choices:
 - Marketing or Technical
 - All segments or segment-based
 - Factored into requirements and checked at early development stage
 - Examples (in development):
 - Robustness testing
 - Software signing
 - Firmware signing
 - Secure Boot

Bricks and Platforms

- Consistency Library
 - Documents
 - Consistency Rules
 - Code References
 - Bricks
- IoT Platform for Hosted Services EcoStruxure
 - Communication services
 - User AuthN and AuthZ
 - Data storage
 - Application interface services



Innovative Designs – Applying IT Principles to OT Environment

- Software, Device, and Patch Integrity
- User to Machine Authentication and Authorization
- Machine to Machine Authentication and Authorization
- Device Authenticity
- Device Replacement
- Logging and Auditing
- Robustness

Integrity

- We developed a Software Signing Utility to assist development teams.
 - Using Commercial MPKI; Microsoft (or Java) code Signing Techniques
 - Upgrade underway to keep up with Microsoft
- We developed our own Firmware Signing using self-signed MPKI
 - Still immature, but evolving
 - Adoption challenges for our R&D
 - Issues with authentication infrastructure in customer environment
- Patch Signing
 - Depends on Software vs. Firmware

Authentication and Authorization

- All agree on value of certificate-based authentication for U2M and M2M
 - Working on standard approach to allow for interoperability
 - Trying to standardize designs including Secure Elements for future needs
 - Standard crypto library available for all developers
 - Biggest issue is confusion over export/import licensing
- Authorization schemes vary; difficulty with convergence
 - Based on roles
 - Include role in device certificate, or...
 - Centralize system authorization role

Device Replacement

- Consistently, the biggest barrier to applying security technologies and practices
- "How can a failed device be replaced at 3:00AM?"
- Two approaches:
 - System Security Appliance
 - Manages user access, roles, and asset inventory
 - · Use certificates in the device
 - Provide a standards-based CA
 - Use standard mechanisms for certificate deployment through CET
 - Working on CET code changes and user documentation

Logging and Auditing

- Created internal standards for logging methods and format for embedded devices.
 - Standard format
 - Protected from modification
- · Adoption has just started; limited experience for embedded devices

Secure Industrial Communications

- Protect Confidentiality and Integrity
- Secure Modbus
 - Based on TLS
 - Being submitted to Modbus.org
- Secure EtherNet/IP
 - Being managed by ODVA

Robustness

- Network protocol fuzz testing to prevent DoS
 - Standard TCP and UDP
 - Some industrial protocols
- Standardized on Achilles test; certify devices
 - Alternative, Codenomicon, but no device certification available

Key Areas of Innovation

- Blockchain for Asset Authenticity; what are Use Cases?
- Custom fuzzers for unique industrial protocols
- How U2M and M2M authentication works using certificates when system is not internet connected (or connected intermittently) ((or connected through a gateway))
- How do we validate genuineness of a device that connects to our hosted solutions?
 - Did we manufacture it?
 - Is it our firmware?
- How do we validate integrity of embedded device configuration or application program
- Intersection of Security and Safety

Educate our Customers, Channel Partners, and FSE's

- 1. Patch Your System
- 2. Separate the Network
- 3. Define and Enforce Contractor Guidelines
- 4. Secure Remote Connections
- 5. Password Management
- 6. Educate Your People
- 7. Monitor Your System

Life Is On Schneider