RAINCOAT: Randomize Network Communication in Power Grid Cyber Infrastructure to Mislead Cyber Attackers

Hui Lin, Zbigniew Kalbarczyk, Ravishankar Iyer

University of Illinois at Urbana-Champaign

Motivation

Ο

Penetration: establish a foothold in a control network

0

Ο

Preparation: study physical process, to decide malicious operations

Execution: deliver malicious operations

Detection

Rely on general purpose security measures, e.g., firewalls or IDSs

Shortcomings:

- Miss attacks that bypass barriers between corporate and control networks
- Hard to eliminate false positives

Detection

Combine knowledge on cyber and physical infrastructures

Shortcomings:

- Hard to avoid interruptions of normal operations
- Difficult to integrate with responses mitigating a disruption of physical processes

Detecting Attacks at Preparation Stage

IP-based network

Hardwired connection

Edge network switches

- Attackers' reconnaissance operations introduce little anomaly
 - Monitor measurements to prepare a strategy

00 (10

- Active monitoring
 - Use legitimate requests to obtain measurements
- Passive monitoring
 - Observe measurements from existing data acquisitions

Threat Model

- In *control networks*, attackers can penetrate computing devices on any communication path that connects the control center and end devices
 - e.g., establish footholds in HMI or RTU or laptops connected to WAN
- In *control center*, we trust the integrity of state estimation software
- In *substations*, we assume that attackers cannot physically access end devices, sensors, and breakers
- We trust the integrity of *edge switches*, which are used to manipulate network traffic to disrupt and mislead attacks

What Do We Propose - Raincoat

- RAINCOAT: randomize network communication in power grid cyber infrastructure to mislead cyber attackers
 - **Disrupt** attackers: increase unpredictability in networks
 - Mislead attackers: craft decoy measurements

Normal Periodic Data Acquisition

- SCADA master issues data acquisition requests to all end devices periodically
 - T ranges from 1 to 10 seconds (based on IEEE Std 1646)

Randomize Data Acquisition

- Objective of Raincoat:
 - Obfuscate attackers with randomized device connectivity and the mix of real and spoofed data
 - Allow system operators collecting measurements from all devices with the same interval

Implementation with SDN

- SDN controller:
 - Randomize data acquisition request
 - Spoof measurements on behalf of off-line devices
- Small changes on existing cyber-physical infrastructure •

Craft Decoy Measurements to Mislead Attackers

- Based on decoy measurements, adversaries will not design effective attack strategies
 - In false data injection attacks (FDIA), compromised measurements do not bypass the bad data detection in the state estimation
 - In control-related attacks (CRA), compromised control commands do not lead to physical damage

Туре	Preconditions	Target
FDIA	B_{jk} , susceptance of all transmission lines	P_j^G and P_j^L of all substations; P_{jk} of all transmission lines
CRA	P_j^G , Q_j^G , P_j^L , Q_j^L (active/reactive power generation and consumptions) of all substations; P_{jk} , Q_{jk} (active/reactive power flows) of all transmission lines	Control commands that can disconnect transmission lines or substations in a power grid

Procedure to Craft Decoy Measurements

- Step 1: set initial misleading values
 - Step 1.a: mislead FDIAs (false data injection attack)
 - Decide susceptance of all transmission lines
 - Step 1.b: mislead CRAs (control-related attacks)
 - Decide power flows of transmission lines
- Step 2: refine the values based on physical model
 - Iteratively use the results/errors from state estimation to:
 - adjust initial values
 - determine remaining measurements

Step 1: Mislead Control-Related Attacks

Decoy Measurements

• Attack objective:

- Use commands to disconnect multiple transmission lines to cause overloading lines
- Attack prerequisite:
 - Identify critical transmission lines, which deliver heavy power flows
- Protection
 - Craft decoy measurements such that attackers always target transmission lines that deliver light power flows

Step 2: Refine Measurements

- Adjust measurements based on errors from state estimation
- Repeat until errors become small enough
 - Bypass the bad data detection

Evaluation Setup

Security Evaluation

- Performed by numerical simulation in Matpower
 - IEEE 24 bus, 30 bus, RTS-96, 286bus, 405-bus, and 1153-bus systems
- Evaluation of control-related attacks
 - Issue malicious commands that disconnect transmission lines
 - measure the probability of successful attacks
- With Raincoat, the probability of successful attacks is reduced from 70% to 5% (for 1153-buses system)
 - smaller than the probability observed in random attacks

- Evaluation of false-data injection attacks
 - Compromise measurements
 - Measure the probability of successful attacks, which bypass the bad data detection
- With Raincoat, all these evaluated attacks are detected

Evaluation of Control-Related Attacks

- Implement malicious commands that disconnect multiple transmission lines; measure the probability of attacks that cause overloading remaining lines
 - Targeted attack
 - Attackers identify critical (e.g., heavy loaded) transmission lines
 - Randomly disconnect critical transmission lines
 - Raincoat
 - Attackers identify critical transmission lines from decoy measurements
 - Randomly disconnect false critical transmission lines
 - Random attack (baseline)
 - Attackers have no (or little) knowledge of power system topology and state
 - Randomly disconnect transmission lines

Evaluation of Control-Related Attacks

RTS-96; IEEE Reliability Test System, including 73 buses and 120 transmission lines)

- Probability of successful attacks reduced from 90% (for targeted attack) to below 20% (when using Raincoat)
 - less than for random attacks (attackers have no system knowledge)
- Attack introduces little disturbance even if the malicious command is executed

Performance Evaluation

- Performed in constructed control networks of six different topologies
- Measure the delay of communication caused by Raincoat:
 - Latency between edge switches and SDN controllers
 - Latency of SDN controllers constructing spoofed measurements

Performance Results

■ Forward ■ Raincoat ■ Base

- Raincoat introduces less than 6% overhead (on average) as compared with SDN *Forward* flow control mechanisms
- When using Raincoat, the control network still meets the requirement of communication latency (in IEEE Std 1646)

Conclusions

- RAINCOAT: randomizes network communication in power grid cyber infrastructure to mislead cyber attackers
 - Randomize network connectivity of end devices
 - Disrupt adversaries' knowledge to prepare attacks
 - Expose an attacker presence in the system
 - Craft decoy measurements
 - Mislead adversaries' into designing ineffective attacks

- Decoy measurements to mislead attackers into designing:
 - False data injection attacks that cannot pass the state estimation
 - Control-related attacks whose probability of generating physical damage is reduced to less than 5%

Future Direction

Research Goals

