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Motivation

Natural-Gas fired generators produce a significant portion of
electricity in the US.

Electric grid operation cannot neglect the gas grid constraints, and
vice versa.
Goals:

Solving unified unit commitment (UC) for gas and electric grid,
Coordinated generator contingency analysis.

Figure: Share of U.S. Electricity
Generation.
source: U.S. Energy Information Agency.
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How US Generates its Electricity?
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Gas Grid Components

For our modeling purposes, a gas network is composed of the following
components:

Gas wells/storage,

Pipelines,

Compressors,

Demand.

Figure: Natural Gas Grid Model.
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Steady-State Gas-Flow Equation

In one-dimensional steady-state, the gas flow equation over a pipeline of
length L is:

π2
in − π2(x) = h

x

L︸︷︷︸
α

(f )2sgn(f ) (1)

f : gas flow [m3/h],
π: gas pressure [N/m2],
h: constant that depends on the pipeline friction factor, diameter, length,
gas compressibility factor, gas constant, and gas temperature.
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Optimal Gas Flow (OGF)

Minimize:
∑

t∈T
∑

w∈W dwGt,w + d res
w rgt,w

Subject to:

Gt,w ≥ Gmin
w , ∀t,w (2a)

Gt,w + rgt,w ≤ Gmax
w , ∀t,w (2b)∑

w∈W(i)

Gt,w +
∑

k∈µ+(i)

ft,k −
∑

k∈µ−(i)

ft,k = GLt,i , ∀t, i (2c)

ρt,k =

(
π2
t,j + (1− αk)hk f

2
t,k .sgn(ft,k)

π2
t,i − αkhk f

2
t,k .sgn(ft,k)

)sgn(ft,k )

, ∀t, k (2d)

πmin
i ≤ πt,i ≤ πmax

i , ∀t, i (2e)

ρt,k ≥ 1 is the compressor ratio, and is usually added as a parameter in the
base case

.
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1ρt,k = 1 for pipelines without compressor.
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Transforming (2d) and (2e) into linear constraints2

If sgn(ft,k) > 0:

√
max

{
0,
ρt,k(πmin

i )2 − (πmax
j )2

hk + (ρt,k − 1)hkαk

}
︸ ︷︷ ︸

γ+
d

≤ ft,k ≤

√
ρt,k(πmax

i )2 − (πmin
j )2

hk + (ρt,k − 1)hkαk︸ ︷︷ ︸
γ+
u

Else if sgn(ft,k) < 0:

−

√
(πmax

j )2 − (πmin
i )2

hk︸ ︷︷ ︸
γ−u

≤ ft,k ≤ −

√
max

{
0,

(πmin
j )2 − (πmax

i )2

hk

}
︸ ︷︷ ︸

γ−d

Key Point: Non-linear constraint is mapped onto two linear constraints.
Mapping is one-to-one, no simplifications/assumptions are made.

2pipelines with compressor only pass the flow in one direction.
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Handling the sgn() function

Define:
ft,k = f +

t,k − f −t,k , f +
t,k ≥ 0, f −t,k ≥ 0

Zt,k =

{
1 if ft,k > 0

0 else

The following constraints are added:

f −t,k = 0, ∀t, k ∈ Eag (3a)

γ+
d .Zt,k ≤ f +

t,k ≤ γ
+
u .Zt,k , ∀t, k (3b)

γ−d .(1− Zt,k) ≤ f −t,k ≤ γ
−
u .(1− Zt,k), ∀t, k /∈ Eag (3c)

Pros Flow direction considered implicitly.
Cons 1) Introduction of binary variables, 2) larger number of

constraints.
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Modified Belgium Gas Grid
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Figure 5: Schematic Belgium gas network
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Figure: Belgium High Calorific Natural Gas Grid.
source: De Wolf and Smeers, “The gas transmission problem solved by an extension of

the simplex algorithm”

Well cost [$/m3]

w1 0.089 34
w2 0.089 34
w3 0.089 34
w4 0.065 83
w5 0.065 83
w6 0.065 83
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OGF Numerical Results
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Figure: OGF for Modified Belgium High Calorific Gas Network. Cost: $3.6015M. Setting:
ρt,8−9 = 1, ρt,17−18 = 1.25
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Uncoordinated Gas and Electric Grid Unit Commitment:
Setup

Assumptions

1 ft3 of natural gas = 1109 BTU (1 MW h = 3.412 14 BTU)

50 MW generators in RTS are treated as gas-fired combined cycle
with efficiency 50%.

20 MW generators in RTS are treated as gas-fired turbines with
efficiency 35%.

Conversion between gas and electric power:

Pg [MW]× 3.412 14 BTU

1 MW h
× 1 ft3

1109 BTU
× 1 m3

35.3147 ft3
× 1

efficiency
= GL

ρt,8−9 = 1, ρt,17−18 = 1.25
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Uncoordinated Gas and Electric Grid Unit Commitment:
Setup

The connections between RTS and the Belgium Grid are:

Gas Node # RTS Bus # Generators IDs

12 101 1,2 (of 4)
18 102 1,2 (0f 4)
20 122 1,2 (of 6)
6 322 3,4,5 (of 6)
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Uncoordinated Gas and Electric Grid Unit Commitment:
Setup
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Figure: Coupling between RTS963system and Modified Belgium Gas Grid.

3
Grigg, Wong, Albrecht, Allan, Bhavaraju, Billinton, Chen, Fong, Haddad, Kuruganty, et al., “The IEEE reliability test

system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee”
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Uncoordinated Gas and Electric Grid Unit Commitment:
Result

Solve electric grid unit commitment → get results from UC and solve GF.
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Figure: Uncoordinated Unit Commitment.
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pipeline limit in
the uncoordinated
case.
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Unified Gas and Electric Grid Unit Commitment

Minimize
∑
t∈T

cg (Gw ) + ce(Pg , rg )

Subject to Gas Grid Constraints

Electric UC Constraints∑
w∈W(i)

Gt,w +
∑

k∈µ+(i)

ft,k −
∑

k∈µ−(i)

ft,k

−
∑

g∈S(i)

Pt,gηg = GLt,i , ∀t, i

Eran Schweitzer (ASU) Unified Gas and Electric Unit Commitment Feb. 9, 2017 14 / 23



Unified Gas and Electric Grid Unit Commitment
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Figure: Unified UC.

Case
Electric UC
optimal cost

Unified $2.9676M
Uncoordinated $2.9484M

Cost of Unified is greater than cost
of Uncoordinated. However, the
Uncoordinated case has infeasibility.
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Coordinated Generator Contingency Analysis

Premise

Gas-fired generators provide much non-spinning reserves and are
crucial during generator contingencies.

Generation from gas-fired generators during a contingency must also
respect pipeline constraints.

0 ≤ rg c
t,w ≤ rgt,w , ∀c , t,w (4a)∑

w∈W
rg c

t,w =
∑
g∈Gw

r ct,gηg , ∀c , t (4b)

∑
w∈W(i)

(Gt,w + rg c
t,w ) +

∑
k∈µ+(i)

f ct,k −
∑

k∈µ−(i)

f ct,k

−
∑

g∈S(i)

(Pt,g + r ct,g )ηg = GLt,i , ∀c , t, i (4c)

f c
−

t,k = 0, ∀c, t, k ∈ Eag (4d)

γ+
d .Z

c
t,k ≤ f c

+

t,k ≤ γ+
u .Z

c
t,k , ∀c , t, k (4e)

γ−d .(1− Z c
t,k) ≤ f c

−
t,k ≤ γ−u .(1− Z c

t,k), ∀c , t, k /∈ Eag (4f)
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f c
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−
t,k ≤ γ−u .(1− Z c

t,k), ∀c, t, k /∈ Eag (4f)
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Unified Generator Contingency: Setup

The connections between RTS and the Belgium Grid are slightly modified:

Gas Node # RTS Bus # Generators IDs

20 101 1,2 (of 4)
18 102 1,2 (0f 4)
12 122 1,2,3 (of 6)
6 322 3,4,5 (of 6)
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Unified Generator Contingency: Results
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Figure: Activated Gas Generators and Gas
Wells Reserve for Gen-90 Contingency.

Interpretation

Activated gas well reserves follow the
activated gas generators reserves as
expected.

Note: Separate testing reveals that
reserves are correctly allocated, such
that even if all are activated no flow
violations will occur.
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Future Direction: Impact of Dynamics

Line pack is a slow moving processes ⇒ Gas generation cannot be
consumed immediately at load points.

We need a dynamic model to understand the impacts of these
restrictions.

E.g. quick step changes by gas-fired generators. Is there enough
pressure?
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Future Direction: Contingencies in Gas Grid

We are used to considering N − 1 contingencies in the electric grid

A single failure in the gas supply system

We should consider these specific sets of N−many contingencies
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Future Direction: Contingencies in Gas Grid

We are used to considering N − 1 contingencies in the electric grid

A single failure in the gas supply system can be directly linked to a
set of contingencies in the electric grid.

We should consider these specific sets of N−many contingencies4.

4
Also suggested in NERC 2013 Special Reliability Assessment: “Accommodating an Increased Dependence on Natural Gas

for Electric Power” (chapter 3).
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Conclusion

Violation of the gas grid limits due to uncoordinated planning of
electric grid is shown,

Unified gas and electric grid unit commitment is presented to mitigate
the issue,

Generator contingency analysis is extended to consider coupled
planning and operation,
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Thank You!
Questions?
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