Unified Gas and Electric Unit Commitment with Coordinated Generator Contingency

Eran Schweitzer

SINE Lab directed by Prof. Anna Scaglione Arizona State University (ASU)

CRED-C All-Hands Meeting Feb. 9th, 2017

*Part of the Security Gaps Arising Due to Coupled Energy Delivery Sub-systems Activity

Motivation

- 2 Gas Network
- Oncoordinated Gas and Electric Grid Unit Commitment
- 4 Unified Gas and Electric Grid Unit Commitment
- 5 Coordinated Generator Contingency Analysis

6 Conclusion

Motivation

- Natural-Gas fired generators produce a significant portion of electricity in the US.
- Electric grid operation cannot neglect the gas grid constraints, and vice versa.
- Goals:
 - Solving unified unit commitment (UC) for gas and electric grid,
 - Coordinated generator contingency analysis.

How US Generates its Electricity?

By John Muyskens, Dan Keating and Samuel Granados

Feb. 9, 2017 4 / 23

Gas Grid Components

For our modeling purposes, a gas network is composed of the following components:

- Gas wells/storage,
- Pipelines,
- Compressors,
- Demand.

In one-dimensional steady-state, the gas flow equation over a pipeline of length L is:

$$\pi_{in}^2 - \pi^2(x) = h \underbrace{\frac{x}{L}}_{\alpha}(f)^2 sgn(f)$$
(1)

- f: gas flow $[m^3/h]$,
- π : gas pressure [N/m²],

h: constant that depends on the pipeline friction factor, diameter, length, gas compressibility factor, gas constant, and gas temperature.

.

Eran Schweitzer (ASU)

Minimize: $\sum_{t \in T} \sum_{w \in W} d_w G_{t,w} + d_w^{res} rg_{t,w}$ Subject to:

イロト イポト イヨト イヨト

.

Eran Schweitzer (ASU)

Minimize:
$$\sum_{t \in \mathcal{T}} \sum_{w \in \mathcal{W}} d_w G_{t,w} + d_w^{res} rg_{t,w}$$

Subject to:

$$G_{t,w} \ge G_w^{min}, \qquad \qquad \forall t, w \qquad (2a)$$

э.

・ロト ・ 日 ト ・ 田 ト ・

.

Eran Schweitzer (ASU)

Minimize:
$$\sum_{t \in \mathcal{T}} \sum_{w \in \mathcal{W}} d_w G_{t,w} + d_w^{res} rg_{t,w}$$

Subject to:

$$\begin{aligned} G_{t,w} &\geq G_w^{min}, & \forall t, w \quad \ \ (2a) \\ G_{t,w} &+ rg_{t,w} \leq G_w^{max}, & \forall t, w \quad \ \ (2b) \end{aligned}$$

イロト イヨト イヨト イヨト

.

Eran Schweitzer (ASU)

Minimize: $\sum_{t \in \mathcal{T}} \sum_{w \in \mathcal{W}} d_w G_{t,w} + d_w^{res} rg_{t,w}$ Subject to:

$$G_{t,w} \ge G_w^{min}, \qquad \qquad \forall t, w \qquad (2a)$$

$$G_{t,w} + rg_{t,w} \leq G_w^{max}, \qquad \qquad \forall t, w \qquad (2b)$$

$$\sum_{w \in \mathcal{W}(i)} G_{t,w} + \sum_{k \in \mu^+(i)} f_{t,k} - \sum_{k \in \mu^-(i)} f_{t,k} = GL_{t,i}, \qquad \forall t, i$$
(2c)

イロト イポト イヨト イヨト

Minimize: $\sum_{t \in \mathcal{T}} \sum_{w \in \mathcal{W}} d_w G_{t,w} + d_w^{res} rg_{t,w}$ Subject to:

$$G_{t,w} \ge G_w^{min}, \qquad \qquad \forall t,w \qquad (2a)$$

$$G_{t,w} + rg_{t,w} \leq G_w^{max}, \qquad \qquad \forall t, w \qquad (2b)$$

$$\sum_{w \in \mathcal{W}(i)} G_{t,w} + \sum_{k \in \mu^+(i)} f_{t,k} - \sum_{k \in \mu^-(i)} f_{t,k} = GL_{t,i}, \qquad \forall t, i \qquad (2c)$$

$$\rho_{t,k} = \left(\frac{\pi_{t,j}^2 + (1 - \alpha_k)h_k f_{t,k}^2 \cdot \operatorname{sgn}(f_{t,k})}{\pi_{t,i}^2 - \alpha_k h_k f_{t,k}^2 \cdot \operatorname{sgn}(f_{t,k})}\right)^{\operatorname{sgn}(f_{t,k})}, \qquad \forall t, k \qquad (2d)$$

.

イロン イ理と イヨン イヨン

Minimize:
$$\sum_{t \in \mathcal{T}} \sum_{w \in \mathcal{W}} d_w G_{t,w} + d_w^{res} rg_{t,w}$$

Subject to:

$$G_{t,w} \ge G_w^{min}, \qquad \qquad \forall t,w \qquad (2a)$$

$$G_{t,w} + rg_{t,w} \leq G_w^{max}, \qquad \qquad \forall t, w \qquad (2b)$$

$$\sum_{w \in \mathcal{W}(i)} G_{t,w} + \sum_{k \in \mu^+(i)} f_{t,k} - \sum_{k \in \mu^-(i)} f_{t,k} = GL_{t,i}, \qquad \forall t, i \qquad (2c)$$

$$\rho_{t,k} = \left(\frac{\pi_{t,j}^2 + (1 - \alpha_k)h_k f_{t,k}^2 \cdot \operatorname{sgn}(f_{t,k})}{\pi_{t,i}^2 - \alpha_k h_k f_{t,k}^2 \cdot \operatorname{sgn}(f_{t,k})}\right)^{\operatorname{sgn}(f_{t,k})}, \qquad \forall t, k \qquad (2d)$$

$$\pi_i^{\min} \le \pi_{t,i} \le \pi_i^{\max}, \qquad \forall t,i \qquad (2e)$$

.

イロト イヨト イヨト イヨト

Minimize: $\sum_{t \in \mathcal{T}} \sum_{w \in \mathcal{W}} d_w G_{t,w} + d_w^{res} rg_{t,w}$ Subject to:

$$G_{t,w} \ge G_w^{min}, \qquad \qquad \forall t,w \qquad (2a)$$

$$G_{t,w} + rg_{t,w} \leq G_w^{max}, \qquad \qquad \forall t, w \qquad (2b)$$

$$\sum_{w \in \mathcal{W}(i)} G_{t,w} + \sum_{k \in \mu^+(i)} f_{t,k} - \sum_{k \in \mu^-(i)} f_{t,k} = GL_{t,i}, \qquad \forall t, i \qquad (2c)$$

$$\rho_{t,k} = \left(\frac{\pi_{t,j}^2 + (1 - \alpha_k)h_k f_{t,k}^2 \cdot \operatorname{sgn}(f_{t,k})}{\pi_{t,i}^2 - \alpha_k h_k f_{t,k}^2 \cdot \operatorname{sgn}(f_{t,k})}\right)^{\operatorname{sgn}(f_{t,k})}, \qquad \forall t,k \qquad (2d)$$

$$\pi_i^{\min} \le \pi_{t,i} \le \pi_i^{\max}, \qquad \qquad \forall t,i \qquad (2e)$$

 $\rho_{t,k} \geq 1$ is the compressor ratio, and is usually added as a parameter in the base case^1.

Transforming (2d) and (2e) into linear constraints²

If $sgn(f_{t,k}) > 0$:

$$\underbrace{\sqrt{\max\left\{0, \frac{\rho_{t,k}(\pi_i^{\min})^2 - (\pi_j^{\max})^2}{h_k + (\rho_{t,k} - 1)h_k\alpha_k}\right\}}}_{\gamma_d^+} \le f_{t,k} \le \underbrace{\sqrt{\frac{\rho_{t,k}(\pi_i^{\max})^2 - (\pi_j^{\min})^2}{h_k + (\rho_{t,k} - 1)h_k\alpha_k}}}_{\gamma_u^+}$$

 $^2 \text{pipelines}$ with compressor only pass the flow in one direction $_{\ensuremath{\mathcal{D}}}$,

Eran Schweitzer (ASU)

Unified Gas and Electric Unit Commitment

Feb. 9, 2017 8 / 23

Transforming (2d) and (2e) into linear constraints

If $sgn(f_{t,k}) > 0$:

$$\underbrace{\sqrt{\max\left\{0, \frac{\rho_{t,k}(\pi_i^{\min})^2 - (\pi_j^{\max})^2}{h_k + (\rho_{t,k} - 1)h_k\alpha_k}\right\}}}_{\gamma_d^+} \le f_{t,k} \le \underbrace{\sqrt{\frac{\rho_{t,k}(\pi_i^{\max})^2 - (\pi_j^{\min})^2}{h_k + (\rho_{t,k} - 1)h_k\alpha_k}}}_{\gamma_u^+}$$

Else if $sgn(f_{t,k}) < 0$:

Eran Schweitzer (ASU)

$$-\underbrace{\sqrt{\frac{(\pi_j^{max})^2 - (\pi_i^{min})^2}{h_k}}_{\gamma_u^-}}_{\gamma_u^-} \le f_{t,k} \le -\underbrace{\sqrt{\max\left\{0, \frac{(\pi_j^{min})^2 - (\pi_i^{max})^2}{h_k}\right\}}}_{\gamma_d^-}$$

< ∃ > <

Transforming (2d) and (2e) into linear constraints

If $sgn(f_{t,k}) > 0$:

$$\underbrace{\sqrt{\max\left\{0, \frac{\rho_{t,k}(\pi_i^{\min})^2 - (\pi_j^{\max})^2}{h_k + (\rho_{t,k} - 1)h_k\alpha_k}\right\}}}_{\gamma_d^+} \le f_{t,k} \le \underbrace{\sqrt{\frac{\rho_{t,k}(\pi_i^{\max})^2 - (\pi_j^{\min})^2}{h_k + (\rho_{t,k} - 1)h_k\alpha_k}}}_{\gamma_u^+}$$

Else if $sgn(f_{t,k}) < 0$:

$$-\underbrace{\sqrt{\frac{(\pi_{j}^{max})^{2} - (\pi_{i}^{min})^{2}}{h_{k}}}_{\gamma_{u}^{-}} \leq f_{t,k} \leq -\underbrace{\sqrt{\max\left\{0, \frac{(\pi_{j}^{min})^{2} - (\pi_{i}^{max})^{2}}{h_{k}}\right\}}}_{\gamma_{d}^{-}}$$

Key Point: Non-linear constraint is mapped onto two linear constraints. Mapping is one-to-one, no simplifications/assumptions are made.

Define:

Eran Schweitzer (ASU)

$$\begin{split} f_{t,k} &= f_{t,k}^+ - f_{t,k}^-, \quad f_{t,k}^+ \ge 0, f_{t,k}^- \ge 0\\ Z_{t,k} &= \begin{cases} 1 & \text{if } f_{t,k} > 0\\ 0 & \text{else} \end{cases} \end{split}$$

- ∢ ⊢⊒ →

Define:

$$\begin{split} f_{t,k} &= f_{t,k}^+ - f_{t,k}^-, \quad f_{t,k}^+ \ge 0, f_{t,k}^- \ge 0\\ Z_{t,k} &= \begin{cases} 1 & \text{if } f_{t,k} > 0\\ 0 & \text{else} \end{cases} \end{split}$$

The following constraints are added:

$$\begin{aligned} &f_{t,k}^{-} = 0, & \forall t, k \in \mathcal{E}_{g}^{a} \\ &\gamma_{d}^{+}.Z_{t,k} \leq f_{t,k}^{+} \leq \gamma_{u}^{+}.Z_{t,k}, & \forall t, k \end{aligned}$$
 (3a)

Define:

$$\begin{split} f_{t,k} &= f_{t,k}^+ - f_{t,k}^-, \quad f_{t,k}^+ \ge 0, f_{t,k}^- \ge 0\\ Z_{t,k} &= \begin{cases} 1 & \text{if } f_{t,k} > 0\\ 0 & \text{else} \end{cases} \end{split}$$

The following constraints are added:

$$f_{t,k}^- = 0,$$
 $\forall t, k \in \mathcal{E}_g^a$ (3a)

$$\gamma_d^+ Z_{t,k} \le f_{t,k}^+ \le \gamma_u^+ Z_{t,k}, \qquad \forall t,k$$
(3b)

$$\gamma_{d}^{-} (1 - Z_{t,k}) \leq f_{t,k}^{-} \leq \gamma_{u}^{-} (1 - Z_{t,k}), \qquad \forall t, k \notin \mathcal{E}_{g}^{a}$$
(3c)

Define:

$$\begin{split} f_{t,k} &= f_{t,k}^+ - f_{t,k}^-, \quad f_{t,k}^+ \ge 0, f_{t,k}^- \ge 0\\ Z_{t,k} &= \begin{cases} 1 & \text{if } f_{t,k} > 0\\ 0 & \text{else} \end{cases} \end{split}$$

The following constraints are added:

$$f_{t,k}^{-} = 0, \qquad \qquad \forall t, k \in \mathcal{E}_g^a \qquad (3a)$$

$$\gamma_d^+ Z_{t,k} \le f_{t,k}^+ \le \gamma_u^+ Z_{t,k}, \qquad \forall t, k$$
(3b)

$$\gamma_{d}^{-} (1 - Z_{t,k}) \leq f_{t,k}^{-} \leq \gamma_{u}^{-} (1 - Z_{t,k}), \qquad \forall t, k \notin \mathcal{E}_{g}^{a}$$
(3c)

9 / 23

Pros Flow direction considered implicitly.

Cons 1) Introduction of binary variables, 2) larger number of constraints.

Modified Belgium Gas Grid

A1	From storage		
Arger ran gas 1 Zeebrugge 2 Dudzele Brugge 3 Zometzer 4	Antwerpen Norvegian gas		
	7 9 11 Berneau Gravenvoeren 14 Ardeduz Warnand-Dreye	Well	cost $[\$/m^3]$
15 Pé Mons	from the state of	w1	0.089 34
	From storage Namur	w2	0.08934
To Fra	Blaregnies Sinsin	w3	0.08934
10 114		w4	0.06583
	19 Arlon	w5	0.06583
	20	wб	0.06583
	To Luxemburg		

Figure: Belgium High Calorific Natural Gas Grid.

source: De Wolf and Smeers, "The gas transmission problem solved by an extension of the simplex algorithm"

Feb. 9, 2017 10 / 23

OGF Numerical Results

Figure: OGF for Modified Belgium High Calorific Gas Network. Cost: \$3.6015M. Setting: $\rho_{t,8-9} = 1, \rho_{t,17-18} = 1.25$

Eran Schweitzer (ASU)

Feb. 9, 2017 11 / 23

Uncoordinated Gas and Electric Grid Unit Commitment: Setup

Assumptions

- 1 ft^3 of natural gas = 1109 BTU (1 MW h = 3.41214 BTU)
- 50 MW generators in RTS are treated as gas-fired combined cycle with efficiency 50%.
- 20 MW generators in RTS are treated as gas-fired turbines with efficiency 35%.
- Conversion between gas and electric power:

$$\begin{split} P_g[\mathsf{MW}] \times \frac{3.412\,14\,\mathsf{BTU}}{1\,\mathsf{MW}\,\mathsf{h}} \times \frac{1\,\mathsf{ft}^3}{1109\,\mathsf{BTU}} \times \frac{1\,\mathsf{m}^3}{35.3147\,\mathsf{ft}^3} \times \frac{1}{\mathsf{efficiency}} = \mathit{GL} \\ \rho_{t,8-9} = 1, \rho_{t,17-18} = 1.25 \end{split}$$

Uncoordinated Gas and Electric Grid Unit Commitment: Setup

The connections between RTS and the Belgium Grid are:

Gas Node $\#$	RTS Bus $\#$	Generators IDs
12	101	1,2 (of 4)
18	102	1,2 (0f 4)
20	122	1,2 (of 6)
6	322	3,4,5 (of 6)

Uncoordinated Gas and Electric Grid Unit Commitment: Setup

Figure: Coupling between RTS96³system and Modified Belgium Gas Grid.

³Grigg, Wong, Albrecht, Allan, Bhavaraju, Billinton, Chen, Fong, Haddad, Kuruganty, *et al.*, "The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee", (~

Uncoordinated Gas and Electric Grid Unit Commitment: Result

Solve electric grid unit commitment \rightarrow get results from UC and solve GF.

Eran Schweitzer (ASU)

Unified Gas and Electric Unit Commitment

Unified Gas and Electric Grid Unit Commitment

$$\begin{array}{ll} \text{Minimize} & \sum_{t \in \mathcal{T}} c_g(G_w) + c_e(P_g, r_g) \\ \text{Subject to} & \text{Gas Grid Constraints} \\ & \text{Electric UC Constraints} \\ & \sum_{w \in \mathcal{W}(i)} G_{t,w} + \sum_{k \in \mu^+(i)} f_{t,k} - \sum_{k \in \mu^-(i)} f_{t,k} \\ & - \sum_{g \in \mathcal{S}(i)} P_{t,g} \eta_g = GL_{t,i}, \quad \forall t, i \end{array}$$

Unified Gas and Electric Grid Unit Commitment

Figure: Unified UC.

Case	Electric UC optimal cost
Unified	\$2.9676M
Uncoordinated	\$2.9484M

Cost of Unified is *greater than* cost of Uncoordinated. However, the Uncoordinated case has *infeasibility*.

Premise

Eran Schweitzer (ASU)

- Gas-fired generators provide much non-spinning reserves and are crucial during generator contingencies.
- Generation from gas-fired generators *during* a contingency must also respect pipeline constraints.

The following constraints are added to the typical generator contingency analysis:

$$0 \le rg_{t,w}^{c} \le rg_{t,w}, \qquad \forall c, t, w \qquad (4a)$$
$$\sum_{w \in \mathcal{W}} rg_{t,w}^{c} = \sum_{g \in \mathcal{G}_{w}} r_{t,g}^{c} \eta_{g}, \qquad \forall c, t \qquad (4b)$$

Eran Schweitzer (ASU)

The following constraints are added to the typical generator contingency analysis:

$$0 \leq rg_{t,w}^{c} \leq rg_{t,w}, \qquad \forall c, t, w \qquad (4a)$$

$$\sum_{w \in \mathcal{W}} rg_{t,w}^{c} = \sum_{g \in \mathcal{G}_{w}} r_{t,g}^{c} \eta_{g}, \qquad \forall c, t \qquad (4b)$$

$$\sum_{w \in \mathcal{W}(i)} (G_{t,w} + rg_{t,w}^{c}) + \sum_{k \in \mu^{+}(i)} f_{t,k}^{c} - \sum_{k \in \mu^{-}(i)} f_{t,k}^{c}$$

$$- \sum_{g \in \mathcal{S}(i)} (P_{t,g} + r_{t,g}^{c}) \eta_{g} = GL_{t,i}, \qquad \forall c, t, i \qquad (4c)$$

The following constraints are added to the typical generator contingency analysis:

$$\begin{array}{ll} 0 \leq rg_{t,w}^{c} \leq rg_{t,w}, & \forall c, t, w & (4a) \\ \sum_{w \in \mathcal{W}} rg_{t,w}^{c} = \sum_{g \in \mathcal{G}_{w}} r_{t,g}^{c} \eta_{g}, & \forall c, t & (4b) \\ \sum_{w \in \mathcal{W}(i)} (G_{t,w} + rg_{t,w}^{c}) + \sum_{k \in \mu^{+}(i)} f_{t,k}^{c} - \sum_{k \in \mu^{-}(i)} f_{t,k}^{c} \\ - \sum_{g \in \mathcal{S}(i)} (P_{t,g} + r_{t,g}^{c}) \eta_{g} = GL_{t,i}, & \forall c, t, i & (4c) \\ f_{t,k}^{c^{-}} = 0, & \forall c, t, k \in \mathcal{E}_{g}^{a} & (4d) \\ \gamma_{d}^{+}.Z_{t,k}^{c} \leq f_{t,k}^{c^{+}} \leq \gamma_{u}^{+}.Z_{t,k}^{c}, & \forall c, t, k & (4e) \\ \gamma_{d}^{-}.(1 - Z_{t,k}^{c}) \leq f_{t,k}^{c^{-}} \leq \gamma_{u}^{-}.(1 - Z_{t,k}^{c}), & \forall c, t, k \notin \mathcal{E}_{g}^{a} & (4f) \end{array}$$

The connections between RTS and the Belgium Grid are slightly modified:

Gas Node $\#$	RTS Bus $\#$	Generators IDs
20	101	1,2 (of 4)
18	102	1,2 (0f 4)
12	122	1,2,3 (of 6)
6	322	3,4,5 (of 6)

Unified Generator Contingency: Setup

Figure: Coupling between RTS96 system and Modified Belgium Gas Grid for generator contingency test.

16 / 23

Unified Generator Contingency: Results

Figure: Activated Gas Generators and Gas Wells Reserve for Gen-90 Contingency.

Note: Separate testing reveals that reserves are correctly allocated, such that even if *all* are activated no flow violations will occur.

Interpretation

Activated gas well reserves follow the activated gas generators reserves as expected.

Future Direction: Impact of Dynamics

- Line pack is a slow moving processes ⇒ Gas generation cannot be consumed immediately at load points.
- We need a dynamic model to understand the impacts of these restrictions.
- E.g. quick step changes by gas-fired generators. Is there enough pressure?

Future Direction: Contingencies in Gas Grid

• We are used to considering N-1 contingencies in the electric grid

Future Direction: Contingencies in Gas Grid

- We are used to considering N-1 contingencies in the electric grid
- A single failure in the gas supply system

Future Direction: Contingencies in Gas Grid

- We are used to considering N-1 contingencies in the electric grid
- A single failure in the gas supply system can be directly linked to a *set* of contingencies in the electric grid.
- We should consider these specific sets of N-many contingencies⁴.

⁴Also suggested in NERC 2013 Special Reliability Assessment: "Accommodating an Increased Dependence on Natural Gas for Electric Power" (chapter 3).

Eran Schweitzer (ASU)

Unified Gas and Electric Unit Commitment

Feb. 9, 2017 19 / 23

- Violation of the gas grid limits due to uncoordinated planning of electric grid is shown,
- Unified gas and electric grid unit commitment is presented to mitigate the issue,
- Generator contingency analysis is extended to consider coupled planning and operation,

Thank You! Questions?

References I

- D. De Wolf and Y. Smeers, "The gas transmission problem solved by an extension of the simplex algorithm," *Management Science*, vol. 46, no. 11, pp. 1454–1465, 2000.
 - C. Grigg, P. Wong, P. Albrecht, R. Allan, M. Bhavaraju, R. Billinton, Q. Chen, C. Fong, S. Haddad, S. Kuruganty, *et al.*, "The ieee reliability test system-1996. a report prepared by the reliability test system task force of the application of probability methods subcommittee," *IEEE Transactions on power systems*, vol. 14, no. 3, pp. 1010–1020, 1999.
 - C. Liu, M. Shahidehpour, Y. Fu, and Z. Li, "Security-constrained unit commitment with natural gas transmission constraints," *IEEE Transactions on Power Systems*, vol. 24, no. 3, pp. 1523–1536, 2009.

References II

- C. M. Correa-Posada and P. Sanchez-Martin, "Security-constrained optimal power and natural-gas flow," *IEEE Transactions on Power Systems*, vol. 29, no. 4, pp. 1780–1787, 2014.
 - S. Misra, M. W. Fisher, S. Backhaus, R. Bent, M. Chertkov, and F. Pan, "Optimal compression in natural gas networks: A geometric programming approach," *IEEE Transactions on Control of Network Systems*, vol. 2, no. 1, pp. 47–56, 2015.