
Funded by the U.S. Department of Energy and the U.S. Department of Homeland Security | cred-c.org

Scalable Identity and Key Management
for Publish-Subscribe Protocols in EDS

Prashant Anantharaman, Dartmouth College
https://cs.dartmouth.edu/~pa

pa@cs.dartmouth.edu

https://cs.dartmouth.edu/%7Epa
mailto:pa@cs.dartmouth.edu

cred-c.org | 2

Joint work with

• Kartik @ Illinois
• Elizabeth @ Illinois
• David @ Illinois
• Jason
• Sean

Overview

• Introduction
• What are Publish-subscribe protocols?
• Issues in publish-subscribe protocols
• Contributions

• Proposed Architecture
• Goals
• Assumptions
• Our Approach
• PKI vs Macaroons
• Protocols

• Implementation
• Results and Discussion
• Conclusions

Publish Subscribe Protocols

• Producers publish messages
• Consumers wait for certain messages by making use of

subscriptions
• The routing of these messages to consumers is handled by a

broker
• Most widely used protocols include

• MQTT - 47,993 implementations on the internet
• AMQP - 194,989 implementations
• STOMP - 60 implementations
• GOOSE - ethernet layer protocol within a substation,

most SEL and ABB devices come with an option to enable
GOOSE

Data source: shodan.io

cred-c.org | 5

Subscription

cred-c.org | 6

Controller publishing commands

cred-c.org | 7

Controller receiving data

The MQTT Protocol
• Our industry partners use MQTT as a SCADA protocol.

• Smart meters - It is being used to enable communications between smart
meters and controllers

• Grid control - manages control devices ranging from generators,
thermostats and other sensors

• Our partners acknowledge the issues in MQTT implementations
pointed out by us, and are working with us for a key management
scheme

• Limited messages - connect, subscribe, unsubscribe, push
• Everyone subscribed on a channel will get the message

• No details of sender
• Subscribe to ‘#’
• TLS is optional

• The image is from a scan we ran using shodan.io

The MQTT Protocol (contd.)

Issues identified:

• No senders identification
• Active broker compromise is an issue
• No real key management solution for MQTT
• Existing solutions talk about lightweight crypto solutions, but not key

management or revocation

The MQTT Protocol (contd.)

Data source: shodan.io

GOOSE Protocol
• Replay attacks and Spoofing attacks are very easy to

perform due to the lack of identification and confidentiality
mechanisms.

• It is an ethernet layer protocol, and all the attacks on the
ethernet layer are still possible, and we can do very little to
mitigate them.

• Packet Spoofing is a major issue, since GOOSE ignores
packets based on SqNum field. In case the packet is less than
the SqNum field in the previous spoofed packet, it is ignored,
leading to several packets to be ignored.

cred-c.org | 12

Contributions

• We provide results from measurements of the
authentication (or lack thereof) of publish-subscribe
protocols appearing on the internet.

• Demonstrate the effectiveness of our macaroon-based key
management scheme in the context of publish-subscribe
schemes.

• We built a toolkit for our scheme, and run experiments on an
implementation of MQTT. We show that in terms of CPU-
time and developer effort, our systems performs well within
the acceptable latency bounds.

Overview

• Introduction
• What are Publish-subscribe protocols?
• Issues in publish-subscribe protocols
• Contributions

• Proposed Architecture
• Goals
• Assumptions
• Our Approach
• PKI vs Macaroons
• Protocols

• Implementation
• Results and Discussion
• Conclusions

Goals

• Build a system resilient to active server compromises

• Assign separate keys for long lasting assertions like the identity, and
short lasting ones like accesses to channels

• Broker doesn’t see any raw messages, and hence any clients
connected without keys won’t see them either

• In case of device compromise, only the channels the device has
access to are compromised

• Release the toolkit for the controller and the individual devices

Assumptions

• We can install keys securely during deployment of a device

• The cryptographic primitives are bug-free

• The devices can securely store the identity and attribute
channel specific keys

cred-c.org | 16

Our Approach
• Each device has two kinds of identities -

• A core identity - installed either during manufacturing or
during deployment.

• Association attributes - one macaroon per channel. These
are shorter lived, and need to be changed frequently.

• An attribute can be formalized as a tuple (P,O, Δ).
• Property P holds for Object O for Time Δ.
• The core identity assertions are made by the manufacturer

or deployer, and are verified by the controller.
• The attribute assertions are made by the controller, when

provided with the identity assertion.

Macaroons

• A macaroon consists of two parts
• A public part: consisting a random nonce and a set of caveats
• A secret part: the final HMAC value generated by iteratively computing the

HMAC on individual caveats. This secret is used as a shared secret to
compute subsequent session keys

Macaroons (contd.)

PKI vs Macaroons

cred-c.org | 20

Our scheme in the lifecycle of a device in EDS

cred-c.org | 21

Who makes the assertions?

cred-c.org | 22

Who makes the assertions?

cred-c.org | 23

Who makes the assertions? (contd.)

cred-c.org | 24

Session Keys

• We make use of the J-PAKE algorithm to establish a session
key between the device and the controller

• The J-PAKE algorithm is resilient to Known-key attacks,
online and offline dictionary attacks, and provides forward
secrecy

• It generates a high entropy cryptographic key from a low
entropy secret

• This session key is then used to set up the channel specific
macaroons

cred-c.org | 25

Short Lived Macaroons

cred-c.org | 26

Operation

cred-c.org | 27

Revocation

• The short-lived keys expire soon, and are subsequently
blacklisted.

• When the channel keys to a particular device need to be
revoked, the channel keys given to all the other devices with
access to the channel are also revoked. Hence, there is a list
maintained of what devices are connected to what channels.

• A whitelist of all the manufacturer keys is maintained, so
that the macaroons can be verified, and session keys can be
generated from the verified macaroons.

Overview

• Introduction
• What are Publish-subscribe protocols?
• Issues in publish-subscribe protocols
• Contributions

• Proposed Architecture
• Goals
• Assumptions
• Our Approach
• PKI vs Macaroons
• Protocols

• Implementation
• Results and Discussion
• Conclusions

Implementation

• The device and the
controller have been
implemented in ruby.

• Web Server in Ruby on
Rails is a work in progress.

• We made use of
Mosquitto MQTT Broker
and client off-the-shelf,
and built our layer of
security on top of it.

Verification

• We made use of Proverif 1.98pl1 to verify our cryptographic protocol.

• We were able to prove that the shared secret k used in the session
key establishment, is never leaked by the protocol.

Overview

• Introduction
• What are Publish-subscribe protocols?
• Issues in publish-subscribe protocols
• Contributions

• Proposed Architecture
• Goals
• Assumptions
• Our Approach
• PKI vs Macaroons
• Protocols

• Implementation
• Results and Discussion
• Conclusions

Preliminary Results

Our experiments were performed on an ARM Firefly RK3288 development
board.
• The GOOSE protocol has a prescribed maximum latency of 4ms.
• Since all the other schemes make use of elliptic curves, we show that

elliptic curves are highly infeasible for such constrained devices and
show that macaroons are much more usable.

Algorithm Creation time Verification time

Elliptic Curves

Ed25519-256 bits 25.79 ms 29.34 ms

Macaroons

SHA-1-HMAC 662 μs 513 μs

SHA-256-HMAC 761 μs 566 μs

Developer Effort

• The device specific programs would have to be instrumented with our
macaroon generation and verification protocols.

• In our experimental setup, we only had to add 20 lines of python
code to the device clients for MQTT.

• The biggest development effort in similar architectures, is re-creating
the MQTT broker. Our scheme does not require any broker changes.

Overview

• Introduction
• What are Publish-subscribe protocols?
• Issues in publish-subscribe protocols
• Contributions

• Proposed Architecture
• Goals
• Assumptions
• Our Approach
• PKI vs Macaroons
• Protocols

• Implementation
• Results and Discussion
• Conclusions

Conclusions and Future work

• We built a system that meets our latency and security goals

• We intend to release our tool by June 2018

Future work:
• Integrating into the shared secret option of SSP21 protocol

• Working with GE to incorporate our scheme into their MQTT
ecosystem

• We are also in talks with another potential industrial partner and
already had a few initial discussions

cred-c.org | 36

Thank you

• Toolkit will be available soon.

Prashant pa@cs.dartmouth.edu
Kartik palani2@illinois.edu
Elizabeth ereed@illinois.edu
Jason reeves@cs.dartmouth.edu
Sean sws@cs.dartmouth.edu

mailto:pa@cs.dartmouth.edu
mailto:palani2@illinois.edu
mailto:ereed@illinois.edu
mailto:reeves@cs.dartmouth.edu
mailto:sws@cs.dartmouth.edu

@credcresearch

facebook.com/credcresearch/

http://cred-c.org

Funded by the U.S. Department of Energy and the U.S. Department of Homeland Security

		 	 	 	
Scalable Identity and Key Management for Publish-Subscribe Protocols in EDS

	Joint work with
	Overview
	Publish Subscribe Protocols
	Subscription
	Controller publishing commands
	Controller receiving data
	The MQTT Protocol
	The MQTT Protocol (contd.)
	The MQTT Protocol (contd.)
	GOOSE Protocol
	Contributions
	Overview
	Goals
	Assumptions
	Our Approach
	Macaroons
	Macaroons (contd.)
	PKI vs Macaroons
	Our scheme in the lifecycle of a device in EDS
	Who makes the assertions?
	Who makes the assertions?

	Who makes the assertions? (contd.)

	Session Keys
	Short Lived Macaroons
	Operation
	Revocation
	Overview
	Implementation
	Verification
	Overview
	Preliminary Results
	Developer Effort
	Overview
	Conclusions and Future work
	Thank you
	Slide Number 37

