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Mo;va;on


• Address	cyber	supply	chain	risks	due	to	lack	of	trust	in	soFware	
and	firmware	developed	by	third	party	vendors	

• Current	soluJons,	such	as,	side	channel	fingerprinJng,	reverse	
engineering,	deployed	at	chip	level	are	not	scalable	to	protect	
enJre	cyber	supply	chain	and	cannot	provide	near	real-Jme	
tracking	

• Goal	–	Permissioned	blockchain-based	data	provenance	
framework	to	ensure	processes	in	the	supply	chain	are	
funcJoning	according	the	intended	purpose.	



Blockchain Overview 
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Blockchain Overview

l  Permissionless	Blockchain		
					Infrastructures	

l  Open	access	on	the	Internet	
l  Anonymous	validators	
l  Proof	of	Work	consensus		
l  Public	network	

l  Permissioned Blockchain  
     Infrastructures 

l  Private network 
l  Participation by members 

only 
l  Trusted validators 
l  Customized consensus 

protocol 
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Consensus Protocols


• Proof	of	Work	
•  Carry	out	large	computaJon	and	prove	that	computaJon	was	
successfully	

• No	addiJonal	work	to	check	the	proof	
•  Limits	the	rate	of	new	blocks	and	expensive	to	add	invalid	blocks		
•  Aids	in	deciding	between	compeJng	chains	

• Proof	of	Stake	
•  Achieve	consensus	by	eliminaJng	expense	proof	of	work	
•  Block	creaJon	Jed	to	amount	of	stake	

• ByzanJne	Fault	Tolerance	
•  Trusted	enJJes	work	together	to	add	records	
•  VoJng	process	for	accepJng	a	block	on	the	chain	



Consensus Protocols 

• GHOST	
• Weigh	subtrees	to	resolve	conflicts	

• Bitcoin-NG	
•  Leader	elecJon	to	append	microblocks	for	increasing	throughput	and	decreasing	
latency	

• ParallelizaJon	
•  BlockDAG	

•  Eliminate	communicaJon	and	resource	overhead 		
•  Stellar,	XFT,	CheapBF(trusted	hardware)	

• Randomized	BFT	
•  Probability	vs	determinisJcally	
•  BFT	design	framework	(h\p://www.vukolic.com/700-Eurosys.pdf)	

• Mix	of	PoW	and	BFT	(SCP)	
•  PoW	for	idenJty	management	
•  BFT	for	agreement	



Approach


• Blockchain	empowered	cyber	supply	chain	framework	
•  Cyber	Supply	Chain	System	EnJJes	

•  System	Operator,	end-user	and	vendor	
•  Cyber	Supply	Chain	System	Processes	

•  Procurement	and	OperaJonal	Phases	
•  Cyber	Supply	Chain	A\acks	

•  Manufacturer	Source	Code,	vendor	remote	access	

• Proof-of-stake	consensus	protocol	to	balance	tradeoff	
between	scalability	and	resilience	



Blockchain empowered cyber supply chain framework 



 Blockchain empowered cyber supply chain framework 
in a distributed system 



Blockchain empowered cyber supply chain 
framework

• Procurement	Phase	

•  IdenJfy	and	document	cyber	security	risks	during	designing	and	
developing	processes.	

•  Prevent	a\acks	resulJng	from	procuring	and	uJlizing	vendor	devices	or	
soFware,	as	well	as	vendor	transiJons.		

• OperaJonal	Phase	
•  Record	regular	pracJces	to	maintain	the	system	funcJonality	and	
performance,	including	security	check,	periodic	assessment,	logging	and	
monitoring.	

•  Conduct	soFware	updates	from	vendors	either	for	performance	
improvement	or	security-related	enhancement 



Blockchain empowered cyber supply chain framework 

• Procedures	
•  IdenJty	Establishment	
•  Product	AuthenJcity	and	VerificaJon	
•  Access	Control	Management	
•  Contract	NegoJaJon	and	ExecuJon	
•  Logging,	Monitoring	and	AudiJng 

• Challenges 
•  IdenJty	protecJon 
•  Integrity	protecJon 
•  Fine-grained	access	control	management 
•  Automated	contract	execuJon 
•  Tamper-resistant	record	keeping		



Requirements for consensus protocols  

• Efficiency 
•  Time	to	achieve	agreement 
•  TransacJon	processing	Jme 

• Security 
•  DeterminisJc	agreement 
•  Resilient	to	parJal	node	failure 

• Scalability 
• Number	of	validaJng	nodes	
•  TransacJon	Processing 



Distributed Consensus Protocol


• TradiJonal	PoW	suffers	from	large	consensus	delay	and	high	
computaJonal	requirement	

• State-of-the	art	Proof	of	Stake	consensus	works	well	for	
cryptocurrencies	

• Mechanism	for	allocaJng	resources	should	balance	tradeoff	
between	resilience	and	scalability	

• No	formal	work	on	defining	stake	in	distributed	systems	



Distributed Consensus Protocol


• Audit	data-related	operaJons	in	cyber	supply	chain	in	near	real-
Jme	

• PoS	based	Energy-efficient	consensus	protocol		
•  Validators	who	commit	transacJons	offer	securiJes	in	the	form	of	stakes	

• OpportunisJc	use	of	under-uJlized	resources	for	realizing	the	consensus	in	
energy-efficient	way		

•  Reward	of	dedicaJng	resources	to	maintain	consensus	

• Malicious	acJons	in	consensus	are	prevented	through	penalizing	stake	



Threat Model


• Validators’	agility	(may	enter	and	exit	the	consensus	process	
anyJme)	

• Validators	may	behave	erraJcally	or	even	disappear	in	
between	an	ongoing	epoch	

• Permieng	any	user	to	be	validator	can	widen	a\ack	surface	
through	nothing-at-stake	problem	

• ReputaJon	of	validators	ma\ers	otherwise	greediness	may	
drive	the	consensus	toward	maliciousness	



Defining Stakes 


• 	In	cryptocurrency,	stakes	are	nothing	but	tokenized	
form	for	the	currencies		

• In	cloud	compuJng	perspecJve,	stakes	can	be	
•  CPU	power	or	the	number	of	CPU	slices/cores	provided	by	the	CSP	(​𝐶↓𝑖 )	
•  Amount	of	memory	allocated	for	program	execuJon	and	temporary	
buffer	( ​𝑆↓𝑖 )	

• Network	data	rate	( ​𝐷↓𝑖 )	
•  Secondary	storage	etc.	

• Stake	of	a	validator	𝑖	can	be	a	tuple	​X↓i = < ​𝑋↓​𝐶↓𝑖  , ​𝑋↓​𝑆↓𝑖  , ​𝑋↓​𝐷↓𝑖  >	
that	is	selected	out	of	total	allocated	resources	​R↓i =<​𝐶↓𝑖↑max , ​
𝑆↓𝑖↑max , ​𝐷↓𝑖↑𝑚𝑎𝑥 >		

• Given	current	resource	usage	< ​​𝐶↓𝑖  , ​​𝑆↓𝑖  , ​​𝐷↓𝑖  >,	the	greediness	
parameter	(𝛾)	drives	 ​X↓i 	



Incen;ves for par;cipa;on


• Consensus	cannot	survive	with	no	parJcipaJon	
• MoJvaJon	requires	incenJvizaJon	

• Rewarding	consensus	validators	should	be	through	
•  TransacJon	fees	
•  Transferring	resources	to	the	leader’s	account	
•  DiscounJng	leasing	costs	

• Who	offers	the	reward?	
•  Choice	to	make:	Service	provider	or	clients?	

•  If	 ​R↓𝑡𝑜𝑡𝑎𝑙  turns	out	to	be	the	benefit	of	service	for	a	total	of	𝑧	
epochs,	then	reward	​​𝑅↓𝑡𝑜𝑡𝑎𝑙 /𝑧 /epoch		should	be	dedicated		

• Leader-followers’	reward	distribuJon	needs	to	be	agreed	!!!	



PoS based Energy-efficient consensus protocol


a.  Stake	DeterminaJon	
o Stake	for	validator	𝑖= ​𝑋↓𝑖 =f(R, ​R↑u , 𝛾)=𝛾(𝑅− ​𝑅↑𝑢 ),	𝛾	is	greediness	
parameter	

b.  Resource	staking	and	confirmaJon	
•  VMCREATE( < ​𝑋↓​𝐶↓𝑖  , ​𝑋↓​𝑆↓𝑖  , ​𝑋↓​𝐷↓𝑖  >, Shared_Sec) → (​∆↓𝑖 , ​txID↓i ), 

∀𝑖∈𝑁 	
•  VMVERIFY(​∆↓𝑖 )→{0, 1}	

c.  StochasJc	leader	elecJon	based	on	proporJon	of	staked	resources	
•  Probability	of	i	being	a	leader	is	defined	as:	​𝑝↓𝑖 = ​‖​𝑋↓𝑖 ‖/∑𝑘=1↑𝑁▒‖​𝑋↓𝑘 ‖  	

d.  Block	replicaJon	and	verificaJon	
•  Leader’s	block	gets	broadcasted	and	verified	before	commit	otherwise	re-
elecJon	occurs	

e.  Reward	distribuJon	for	parJcipaJon	in	consensus	
•  Extra	resource	as	incenJve,	or	reduced	resource	leasing	cost	as	incenJve	



Algorithm


Stake	DeterminaJon	

Stake	AllocaJon	

Stake	VerificaJon	

Leader	SelecJon	

Block	PropagaJon	



PoS Consensus Timeline




Experimental Testbed


q 	Testbed	environment	is	based	on	a	local	cluster	of	physical	
machines	managed	by	a	Xen	Hypervisor		

q 	ElasJcity	resource	management	is	done	through	Kubernetes	
and	Docker	is	used	for	containerized	services	in	the	VMs	
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Performance Evalua;on


§ Each	validator’s	stake	value	is	designed	as	a	value	between	0	
and	100		

§ 	Validators	stake	remains	unchanged	for	a	fixed	duraJon	

§ 	Network	latency	is	considered	to	be	normally	distributed	
between	1	and	5ms	

§ 	Time	for	block	mining	consists	of	Jme	taken	to	verify	
transacJons	and	stakes	of	the	leader	



Evalua;on Metrics


	
§ 	Average	and	total	Jmes	each	validator	was	the	leader	

§ 	Total	number	of	Jmes	a	leader	was	selected	as	
validator	but	did	not	have	the	highest	stake	amount	

§ 	Average,	max/min	Jme	in	milliseconds	to	make	
progress	and	extend	the	Blockchain	with	a	new	block	



Average ;me to extend Blockchain with a new block 


(In	Presence	of	Network	Delay)	



Average # of ;mes a leader elected based on stake 
amount


Higher	the	stake,	chances	of	becoming	leader	is	high	



Ongoing and Future Work


• Formal	Analysis	of	the	Proof-of-Stake	protocol	to	evaluate	
scalability	and	resilience	to	a\acks	

• Development	of	Blockchain-based	Cyber	Supply	Chain	
Prototype	in	Hyperledger	Fabric	

• Development	of	simulator	to	aid	in	engineering	Blockchain	
soluJons	for	cyber	supply	chain	

• QuanJtaJve	insights	into	choice	of	plasorms	(public/private/public-
private),	consensus	protocols	(Proof-of-Work,	Proof-of-Stake,	Proof	of	
Elapsed	Time,	PracJcal	ByzanJne	Fault	Tolerance),	factors	impacJng	
scalability	(validaJng	nodes,	bootstrap	Jme)	and	resilience	(network/
node	failures)	
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