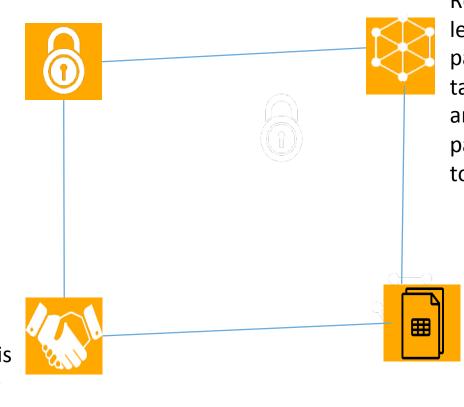

Proof-of-Stake Consensus Protocol for Cyber Supply Chain Data Provenance

Xueping Liang, Deepak Tosh, Sachin Shetty Old Dominion University

Motivation

- Address cyber supply chain risks due to lack of trust in software and firmware developed by third party vendors
- Current solutions, such as, side channel fingerprinting, reverse engineering, deployed at chip level are not scalable to protect entire cyber supply chain and cannot provide near real-time tracking
- Goal Permissioned blockchain-based data provenance framework to ensure processes in the supply chain are functioning according the intended purpose.



Blockchain Overview

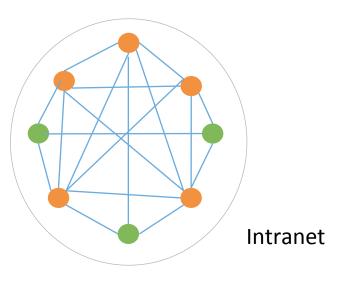
Cryptographically Secure Public/Private signature technology applied to create transactions that establishes a shared truth.

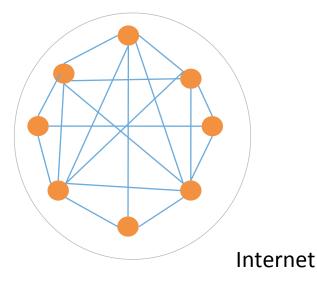
Consensus

Consensus among majority participants is needed to update the database. Leverages validation rules provided by smart contract ("Business Logic")

Distributed Network

Replicas of distributed ledger and no single participant owns or can tamper. Consensus among majority participants is needed to update the database


IMMUTABLE LEDGER


Append only database that holds immutable record of every transaction

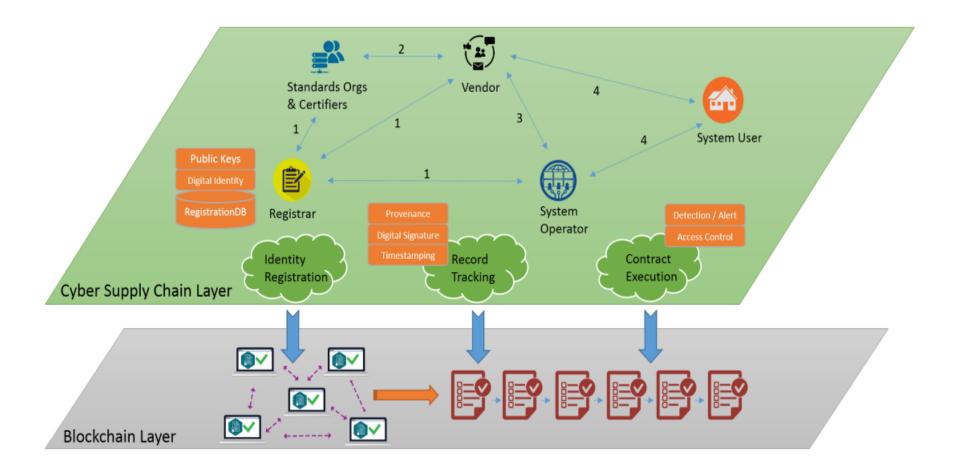
Blockchain Overview

- Permissionless Blockchain Infrastructures
 - Open access on the Internet
 - Anonymous validators
 - Proof of Work consensus
 - Public network

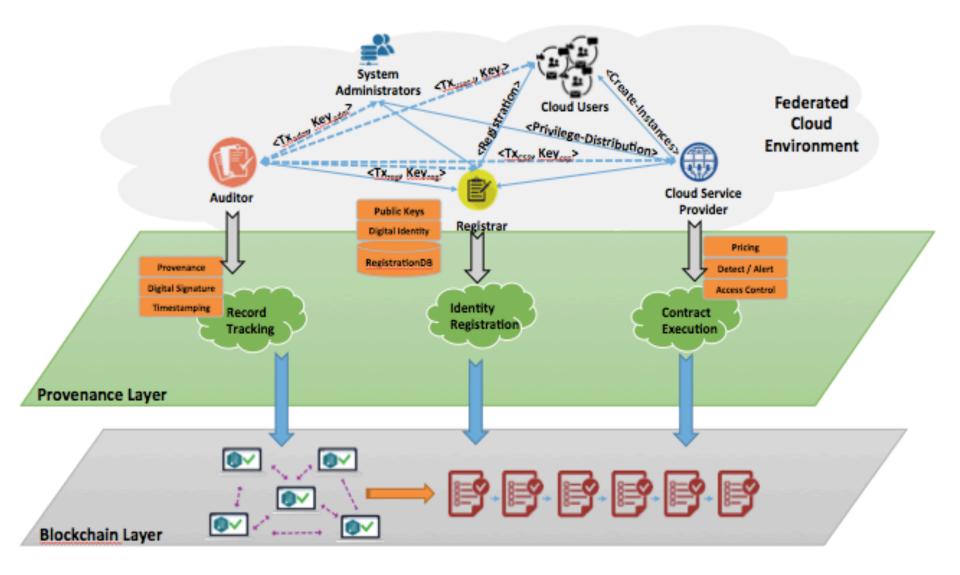
- Permissioned Blockchain Infrastructures
 - Private network
 - Participation by members only
 - Trusted validators
 - Customized consensus
 protocol

Consensus Protocols

- Proof of Work
 - Carry out large computation and prove that computation was successfully
 - No additional work to check the proof
 - Limits the rate of new blocks and expensive to add invalid blocks
 - Aids in deciding between competing chains
- Proof of Stake
 - Achieve consensus by eliminating expense proof of work
 - Block creation tied to amount of stake
- Byzantine Fault Tolerance
 - Trusted entities work together to add records
 - Voting process for accepting a block on the chain


Consensus Protocols

- GHOST
 - Weigh subtrees to resolve conflicts
- Bitcoin-NG
 - Leader election to append microblocks for increasing throughput and decreasing latency
- Parallelization
 - BlockDAG
- Eliminate communication and resource overhead
 - Stellar, XFT, CheapBF(trusted hardware)
- Randomized BFT
 - Probability vs deterministically
 - BFT design framework (http://www.vukolic.com/700-Eurosys.pdf)
- Mix of PoW and BFT (SCP)
 - PoW for identity management
 - BFT for agreement


Approach

- Blockchain empowered cyber supply chain framework
 - Cyber Supply Chain System Entities
 - System Operator, end-user and vendor
 - Cyber Supply Chain System Processes
 - Procurement and Operational Phases
 - Cyber Supply Chain Attacks
 - Manufacturer Source Code, vendor remote access
- Proof-of-stake consensus protocol to balance tradeoff between scalability and resilience

Blockchain empowered cyber supply chain framework

Blockchain empowered cyber supply chain framework in a distributed system

Blockchain empowered cyber supply chain framework

- Procurement Phase
 - Identify and document cyber security risks during designing and developing processes.
 - Prevent attacks resulting from procuring and utilizing vendor devices or software, as well as vendor transitions.
- Operational Phase
 - Record regular practices to maintain the system functionality and performance, including security check, periodic assessment, logging and monitoring.
 - Conduct software updates from vendors either for performance improvement or security-related enhancement

Blockchain empowered cyber supply chain framework

- Procedures
 - Identity Establishment
 - Product Authenticity and Verification
 - Access Control Management
 - Contract Negotiation and Execution
 - Logging, Monitoring and Auditing
- Challenges
 - Identity protection
 - Integrity protection
 - Fine-grained access control management
 - Automated contract execution
 - Tamper-resistant record keeping

Requirements for consensus protocols

- Efficiency
 - Time to achieve agreement
 - Transaction processing time
- Security
 - Deterministic agreement
 - Resilient to partial node failure
- Scalability
 - Number of validating nodes
 - Transaction Processing

Distributed Consensus Protocol

- Traditional PoW suffers from large consensus delay and high computational requirement
- State-of-the art Proof of Stake consensus works well for cryptocurrencies
- Mechanism for allocating resources should balance tradeoff between resilience and scalability
- No formal work on defining stake in distributed systems

Distributed Consensus Protocol

- Audit data-related operations in cyber supply chain in near realtime
- PoS based Energy-efficient consensus protocol
 - Validators who commit transactions offer securities in the form of stakes
 - Opportunistic use of under-utilized resources for realizing the consensus in energy-efficient way
 - Reward of dedicating resources to maintain consensus
 - Malicious actions in consensus are prevented through penalizing stake

Threat Model

- Validators' agility (may enter and exit the consensus process anytime)
- Validators may behave erratically or even disappear in between an ongoing epoch
- Permitting any user to be validator can widen attack surface through <u>nothing-at-stake</u> problem
- Reputation of validators matters otherwise greediness may drive the consensus toward maliciousness

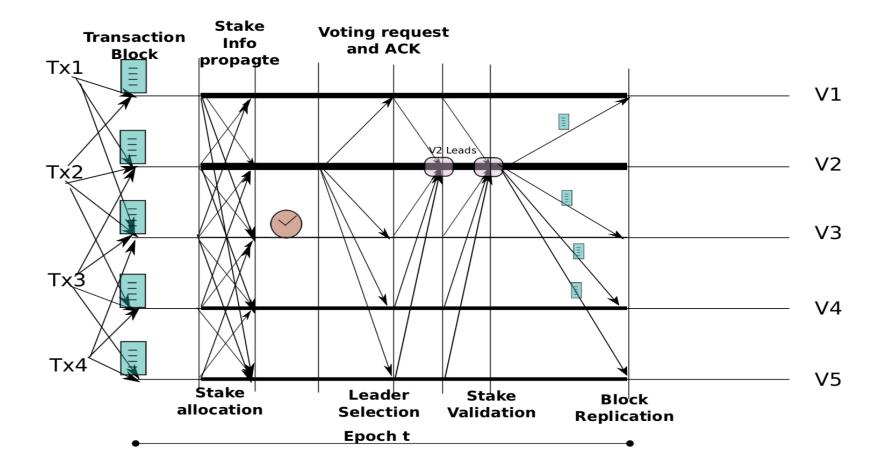
Defining Stakes

- In cryptocurrency, stakes are nothing but tokenized form for the currencies
- In cloud computing perspective, stakes can be
 - CPU power or the number of CPU slices/cores provided by the CSP (Cli)

 - Network data rate (*D*\$\$\$i\$)
 - Secondary storage etc.
- Stake of a validator *i* can be a tuple X i = <X i C i , X i S i , X D i > that is selected out of total allocated resources R i =<C i max , S i max , D i max >
 - Given current reson parameter (γ) drive $\mathcal{X}_{C_i} = \gamma_{cpu}^i (C_i^{max} \tilde{C}_i)$ >, the greediness $\mathcal{X}_{S_i} = \gamma_{mem}^i (S_i^{max} \tilde{S}_i)$ $\mathcal{X}_{D_i} = \gamma_{nw}^i (D_i^{max} - \tilde{D}_i)$

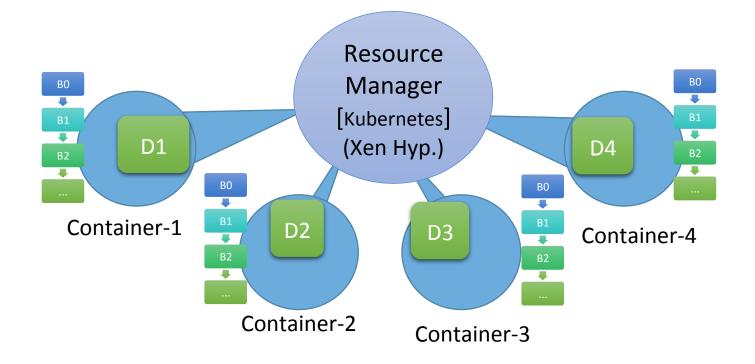
Incentives for participation

- Consensus cannot survive with no participation
 - Motivation requires incentivization
- Rewarding consensus validators should be through
 - Transaction fees
 - Transferring resources to the leader's account
 - Discounting leasing costs
- Who offers the reward?
 - Choice to make: Service provider or clients?
- If $R \downarrow total$ turns out to be the benefit of service for a total of z epochs, then reward $R \downarrow total / z$ /epoch should be dedicated
- Leader-followers' reward distribution needs to be agreed !!!


PoS based Energy-efficient consensus protocol

- a. Stake Determination
 - Stake for validator i=X↓i=f(R, R↑u, γ)=γ(R-R↑u), γ is greediness parameter
- b. Resource staking and confirmation
 - VMCREATE₍ $<X\downarrow C\downarrow i$, $X\downarrow S\downarrow i$, $X\downarrow D\downarrow i$ >, Shared_Sec₎ $\rightarrow (\Delta \downarrow i$, txID \downarrow i₎, $\forall i \in N$
 - VMVERIFY $(\Delta \downarrow i) \rightarrow \{0, 1\}$
- c. Stochastic leader election based on proportion of staked resources
 - Probability of *i* being a leader is defined as: $p \downarrow i = ||X \downarrow i|| / \sum k = 1 \uparrow N |||X \downarrow k||$
- d. Block replication and verification
 - Leader's block gets broadcasted and verified before commit otherwise reelection occurs
- e. Reward distribution for participation in consensus
 - Extra resource as incentive, or reduced resource leasing cost as incentive

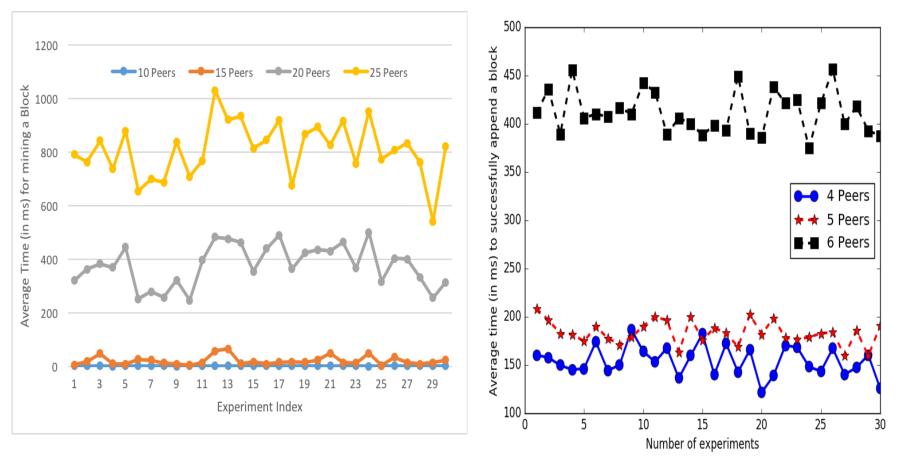
Algorithm


Algorithm 1: PoS Procedure run by a validator i at	
epoch t	
Input : Epoch (t), List of TXs ($\mathcal{L}\{tx(Key \rightarrow Val)\}$),	
and blockchain (\mathcal{B}_{t-1}) until epoch $t-1$	
Result : Updated blockchain state \mathcal{B}_t	
1 Initialize a temporary block b_i , where,	
$b_i \leftarrow H(\mathcal{B}_{t-1}) timestamp M_{root} t \mathcal{L} \{ tx \};$	Stake Determination
2 Define amount of stake $(\mathcal{X}_i(t))$ for epoch t, as	
$< \mathcal{X}_{C_i}(t), \mathcal{X}_{S_i}(t), \mathcal{X}_{D_i}(t) >;$	
$SS \leftarrow \text{create}_S\text{haredSecret}(\{pu_i : i \in N\});$	
4 Allocate virtual instance that consumes resources	Stake Allocation
equivalent to stake $(\mathcal{X}_i(t))$ by invoking	Stake Anocation
$(\Delta_i, txID_i) \leftarrow \text{VMCREATE}(\langle \mathcal{X}_{C_i}, \mathcal{X}_{S_i}, \mathcal{X}_{D_i} \rangle, SS);$	
5 Distribute stake confirmation $(txID_i)$ and resource	Stake Verification
identifier (Δ_i) to other peers;	Stake Vermeation
6 $[status_j] \leftarrow VMVERIFY(\Delta_j) \ \forall j \in N \setminus \{i\};$	
7 if $\sum_{j=1}^{N} status_j = N$ then	Leader Selection
8 $leader(t) \leftarrow selectLeader(\{\mathcal{X}_i : i \in N\});$	
9 if $leader(t) = i$ then	
10 Update the blockchain $\mathcal{B}_t \leftarrow \mathcal{B}_{t-1} b_i$; Provident the block h to other near in the	
Broadcast the block b_i to other peers in the network;	
12 else	Block Propagation
12 Cise 13 Listen to brodcast of block $b_{leader(t)}$ from the	block i ropugation
selected leader;	
14 Update the blockchain $\mathcal{B}_t \leftarrow \mathcal{B}_{t-1} b_{leader(t)};$	
15 end	
16 else	
17 Possible malicious <i>validator</i> and restart the	
consensus for $epoch \leftarrow t + 1$;	
18 goto Step 1.	
19 end	

PoS Consensus Timeline

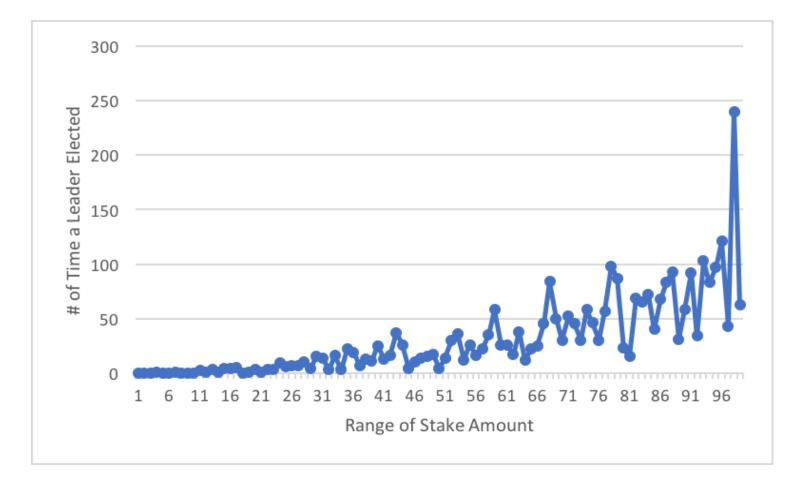
Experimental Testbed

- Testbed environment is based on a local cluster of physical machines managed by a Xen Hypervisor
- Elasticity resource management is done through Kubernetes and Docker is used for containerized services in the VMs


Performance Evaluation

- Each validator's stake value is designed as a value between 0 and 100
- Validators stake remains unchanged for a fixed duration
- Network latency is considered to be normally distributed between 1 and 5ms
- Time for block mining consists of time taken to verify transactions and stakes of the leader

Evaluation Metrics


- Average and total times each validator was the leader
- Total number of times a leader was selected as validator but did not have the highest stake amount
- Average, max/min time in milliseconds to make progress and extend the Blockchain with a new block

Average time to extend Blockchain with a new block

(In Presence of Network Delay)

Average # of times a leader elected based on stake amount

Higher the stake, chances of becoming leader is high

Ongoing and Future Work

- Formal Analysis of the Proof-of-Stake protocol to evaluate scalability and resilience to attacks
- Development of Blockchain-based Cyber Supply Chain Prototype in Hyperledger Fabric
- Development of simulator to aid in engineering Blockchain solutions for cyber supply chain
 - Quantitative insights into choice of platforms (public/private/publicprivate), consensus protocols (Proof-of-Work, Proof-of-Stake, Proof of Elapsed Time, Practical Byzantine Fault Tolerance), factors impacting scalability (validating nodes, bootstrap time) and resilience (network/ node failures)

Related Publications

- Xueping Liang, Sachin Shetty, Deepak Tosh, Yafei Ji, Danyi Li, "Towards a Reliable and Accountable Cyber Supply Chain in Energy Delivery System using Blockchain", 14th EAI International Conference on Security and Privacy in Communication Networks (SecureComm), August 2018
- Xueping Liang, Sachin Shetty, Deepak Tosh, Charles Kamhoua, Kevin Kwiat, Laurent Njilla, "ProvChain: A Blockchain-based Data Provenance Architecture in Cloud Environment with Enhanced Privacy and Availability", The 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), May 2017.
- Deepak Tosh Sachin Shetty, Xueping Liang, Charles Kamhoua, Kevin Kwiat, Laurent Njilla, "Security Implications of Blockchain Cloud with Analysis of Block Withholding Attack", 17th IEEE/ ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), May 2017.

Thank You ! Questions?