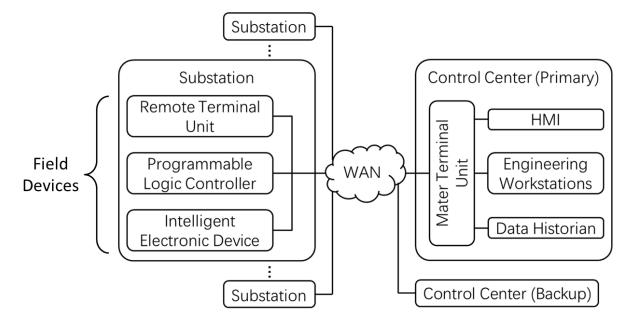
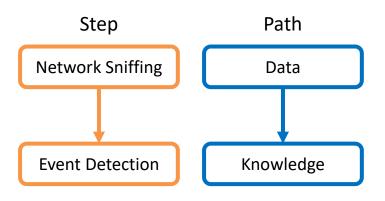
ADNA: online, context-aware, intelligent framework for Anomaly Detection aNd Analysis in SCADA networks


Researchers: Wenyu Ren, Klara Nahrstedt, Tim Yardley

Motivation

• Supervisory Control And Data Acquisition (SCADA)

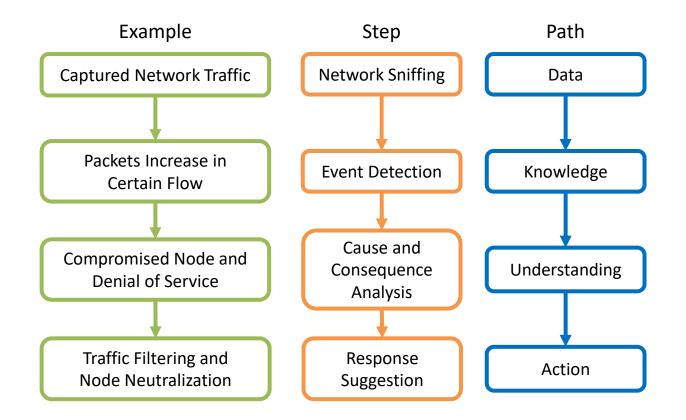
- Problem with existing work
 - Fail to utilize all levels of network data in proper ways
 - Lack of further analysis of anomaly detected


Motivation

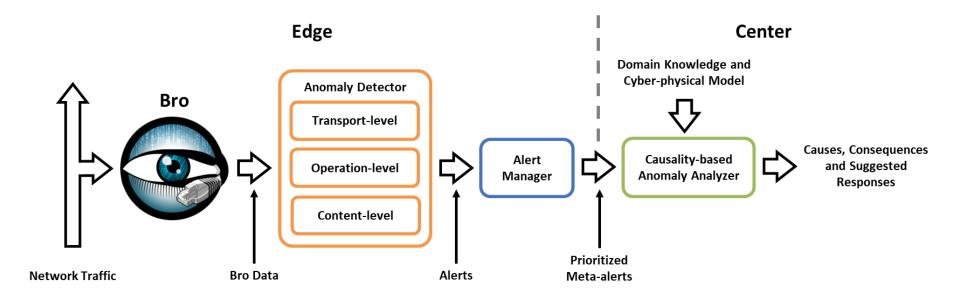
- Data in SCADA networks generally can be divided into three levels:
 - Transport level: traffic flow statistics in transport layer
 - Operation level: operation statistics in industrial control protocols
 - Content level: measurement statistics from field devices
- Data in different levels have quite different characteristics
- Fail to utilize all levels of network data in proper ways
 - Most existing solutions only focus on one or two levels of data
 - Most existing solutions usually fail to utilize various data characteristics to select proper anomaly detection method for different levels

Motivation

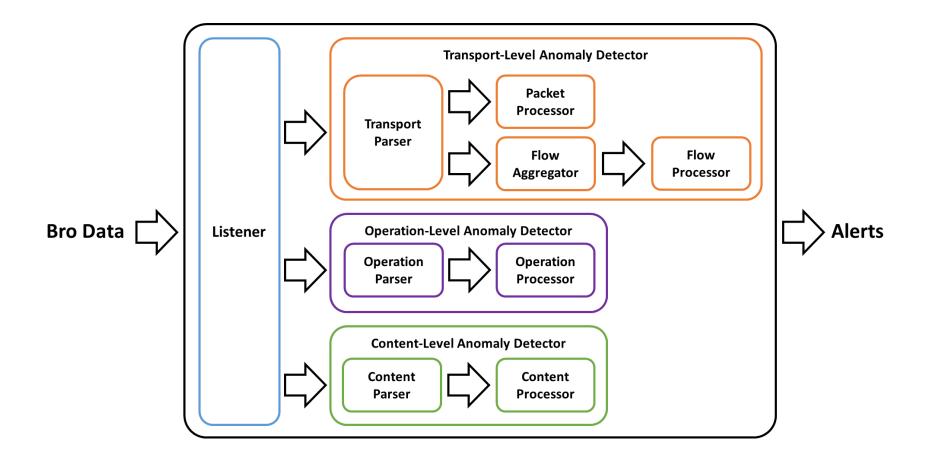
- Lack of further analysis of anomaly detected
 - The focus for most existing work is only turning data into knowledge by performing event detection on network traffic
 - Since the causes and consequences of the event are not identified, it is hard or impossible for the operator to quickly digest the event and react to it


Our Approach

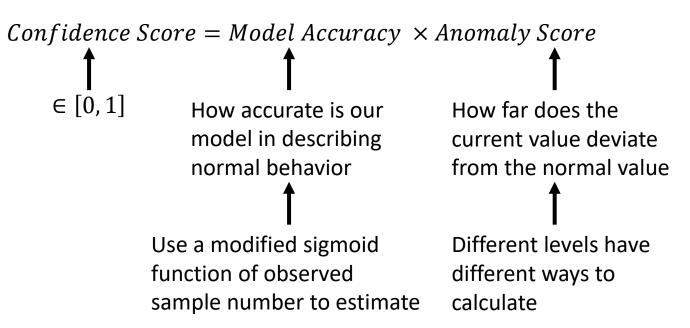
- Objective
 - An online, context-aware, intelligent framework for anomaly detection, cause and consequence analysis, and response suggestion for SCADA networks
- Design decision
 - Build a multi-level anomaly and utilize proper anomaly detection methods to different levels of data
 - Incorporate the capability of not only detecting anomalies, but also analyzing causes and consequences of anomalies as well as suggesting feasible responses to our framework


Our Approach

• DOS Attack example



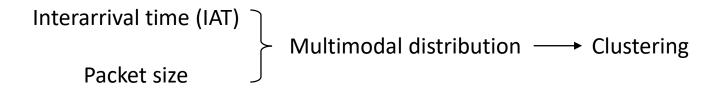
Framework Architecture


Anomaly Detector

Anomaly Detector – Confidence Score of Alert

- Definition
 - Confidence that the corresponding alert is an anomaly.
- Calculation

Anomaly Detector – Transport Level


- Packet processor (runs every packet)
 - Index fields: originator, responder, transport protocol, port number
 - Data fields: interarrival time (IAT), packet size
 - Method: 1D-DenStream (utilizes a simplified 1D version of the clustering method DenStream^[1])
- Flow processor (runs every period T_{flow})
 - Index fields: originator, responder, transport protocol, port number
 - Data fields: packet count
 - Method: mean and standard deviation (utilizes Chebyshev's Inequality to calculate anomaly score^[2])

Cao, F., Estert, M., Qian, W., & Zhou, A. (2006, April). Density-based clustering over an evolving data stream with noise. In *Proceedings of the 2006 SIAM international conference on data mining* (pp. 328-339). Society for Industrial and Applied Mathematics.
Ren, W., Granda, S., Yardley, T., Lui, K. S., & Nahrstedt, K. (2016, November). OLAF: Operation-level traffic analyzer framework for Smart Grid. In Smart Grid Communications (SmartGridComm), 2016 IEEE International Conference on (pp. 551-556). IEEE.

Anomaly Detector – Transport Level

• Different methods are used for different data

Packet count \longrightarrow Unimodal distribution $\longrightarrow \mu, \sigma$

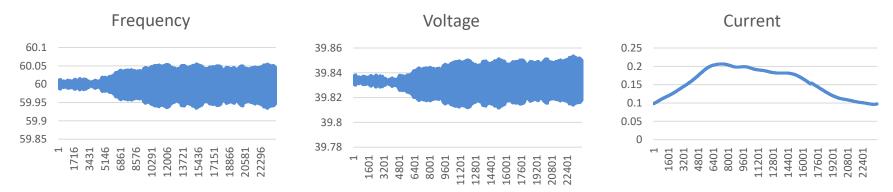
Anomaly Detector – Operation Level

- Operation processor
 - Objective: detect anomalies in operations of industrial control protocols (Modbus, DNP3)
 - Index fields: originator, responder, industrial control protocol, unit id, function
 - Data field: interarrival time (IAT)

Anomaly Type	Method	
Invalid operation (invalid function code, wrong direction)	Check against rules	
Abnormal operation (emerging/disappearing operation, abnormal IAT)	Use statistics: mean and standard deviation (IAT of the same operation is a unimodal distribution)	

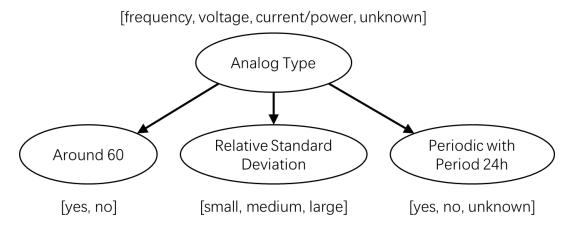
Content processor

- Objective: detect anomalies in measurement values which are included in responses to read requests
- Index fields: holder, industrial control protocol, unit id, measurement type, measurement index
- Data field: measurement value
- Method: different methods for different measurement types
- DNP3 measurement type
 - BinaryAnalog
 - , 占 most common
 - Counter


- Binary
 - Intuition: binary measurement usually has a normal value and an abnormal value
 - Method: count zeros and ones and try to identify the normal value
 - Anomaly Score (AS): 1 Entropy(observed samples)

$$AS = \begin{cases} 1 & x = 0 \text{ or } 1\\ 1 + x \log_2 x + (1 - x) \log_2(1 - x) & 0 < x < 1 \end{cases}$$

where $x = \frac{number \ of \ ones \ observed}{number \ of \ samples \ observed}$


- Analog
 - Most common analog measurements include frequency, voltage, current, power
 - They have quite different characteristics

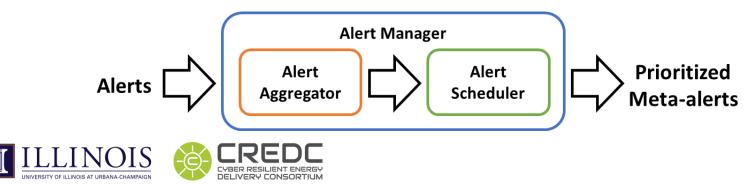
- 2-step anomaly detection
- 1. Categorizes analog measurements into different analog types
- 2. Uses proper method for each type

• Step 1: Bayesian-network-based analog type inference model

- We denote y^k as the observation at k^{th} leaf node and x_i as the i^{th} analog type at the root node

$$P(x_i|y^1, y^2, y^3) = \alpha P(x_i) \prod_{k=1}^{3} P(y^k|x_i)$$

where $\alpha = \frac{1}{P(y^1, y^2, y^3)}$ and can be calculated using $\sum_i P(x_i|y^1, y^2, y^3) = 1$


Step 2: Different anomaly detection method for each analog type

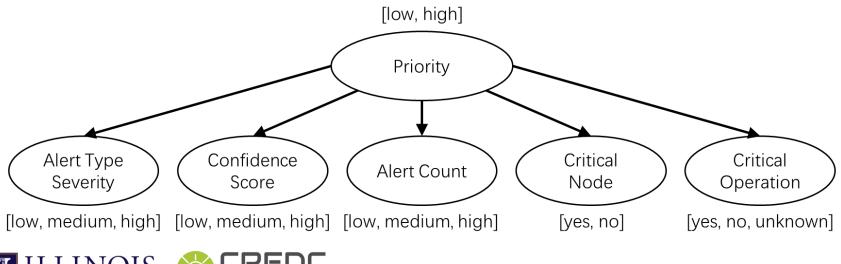
Analog Type	Anomaly Detection Method	
Frequency	Mean and standard deviation	
Voltage	Mean and standard deviation	
Current/Power	Time-slotted mean and standard deviation	
Unknown	Mean, maximum, and minimum	

Alert Manager

- Alert field
 - Index fields (same as index fields of the corresponding processor)
 - Alert type
 - Timestamp
 - Confidence score
 - Statistical fields (current value, mean, standard deviation, etc.)
 - Abnormal data (original parsed data of the corresponding level)
- Alert manager structure

Alert Aggregator

- Objective
 - Aggregate alerts that have same type as well as index fields and have little difference in timestamp
- Meta-alert field
 - Index fields (shared by all of the aggregated alerts)
 - Alert type (shared by all of the aggregated alerts)
 - Timestamp (minimum, maximum)
 - Confidence score (maximum)
 - Count (number of aggregated alerts)
 - Statistical fields (statistical fields of the last alert aggregated)
 - Anomaly data (anomaly data of the last alert aggregated)



Alert Scheduler

- Objective
 - Calculate priority score for each meta-alert and decide when to report it to the control center
- Priority score

NIVERSITY OF ILLINOIS AT URBANA-CHAMPAIG

- We denote y^k as the observation at k^{th} leaf node
- Define Priority Score = $P(Priority = high|y^1, y^2, y^3, y^4, y^5)$

Alert Scheduler

• Meta-alert report frequency

	High-Priority Meta-alert	Low-Priority Meta-alert
Definition	Priority Score $\geq \theta$	Priority Score $< \theta$
Report when first created	Yes	No
Report frequency	T_1 if updated within T_1	$T_2(>T_1)$ if updated within T_2

Next Step

- Utilize alert correlation and attack plan recognition techniques to analyze the meta-alarms.
- Domain knowledge, causal relationships, and cyber-physical models of the system will be utilized to aid cause and consequence analysis of anomalies.

