

Towards Attack Resilient Data Analytics for Power Grid Operations

Travis Hagan, Shashini De Silva

Advisors: Dr Eduardo Cotilla-Sanchez, Dr. Jinsub Kim

April 27, 2018

COLLEGE OF ENGINEERING

School of Electrical Engineering and Computer Science

Motivation

- Modernizing power grid
- Bad data = bad decisions
- Blackouts
- Why GPS attacks?

Project Description

Overview of Approach

Control Actions:

- Update relay settings
- Load shedding
- Line/Generator disconnect

Realistic attacks on PMU devices

- Removing from service
- Hacking PMU to PDC connection
- GPS Jamming
- Spoofing

Case Study: Chicoasen-Angostura transmission line

- Carry away clock
- If PMU data goes through PDC, max error is 200 ms

Overview of Approach

Control Actions:

- Update relay settings
- Load shedding
- Line/Generator disconnect

PSS®E Simulation

- RTS 1996
- Creating a realistic power grid
 - Primarily based on BPA recommendations and current grid operations
 - Implementing an angle change attack

Control Actions:

- Update protection settings
- Load shedding
- Line/Generator disconnect

Simulation - Protective devices

- Overcurrent relay
- Frequency/voltage relay
- Distance relay
- Volts/Hertz relay
- Load shedding relay
- No differential relay in PSSE

Devices	Count	Protective devices (typ)	Protective device (sim)	
Buses	73	2	0	0
Loads	51	2	1	51
Generators	99	2	5	495
Branches	105	3	2	210
Transformers	16	3	1	16
Total				772

Simulation – Rollout Policy

Connection to real devices

- PMUs and relays
- Six settings groups
- USB, Ethernet, Serial

Overview of Approach

Control Actions:

- Update protection settings
- Load shedding
- Line/Generator disconnect

Motivation

 Observing a low dimensional subspace for real time PMU data

Motivation Contd.

• Measurements collected from the power network are constrained by Kirchoff laws.

High-level Idea

 Use the knowledge of the solution space to detect and mitigate the effect of data attacks

PMU Measurement model

 Voltage phasor and outgoing power flow measurements collected from sparsely deployed PMUs

$$y = h(\theta) + e + \mathbf{a}$$

y = PMU measurement vector h(.) = Nonlinear measurement function $\theta = State$ vector e = Gaussian random noise vector a = Attack vector

SCADA Measurement model

 Outgoing power flow and power injection measurements collected from a trustworthy set of SCADA meters

$$b = g(\theta) + e$$

b = SCADA measurement vector g(.) = Nonlinear measurement function

- $\theta = \text{State vector}$
- e =Gaussian random noise

Data Correction Approach

• Leverage both PMU and SCADA measurements

$$\theta^* = \operatorname{argmin}_{\theta} \left\| \begin{bmatrix} y \\ b \end{bmatrix} - \begin{bmatrix} h(\theta) \\ g(\theta) \end{bmatrix} \right\|_2$$
$$\hat{u} = h(\theta^*)$$

$$\hat{y} = h(\theta^*)$$

Simulation Results

Future Steps

- Validate protection settings
- Integrated framework

Questions