Attack Graph Based Metrics for Identifying Critical Cyber Assets in Electric Grid Infrastructure

Chen Huo Panini Sai Patapanchala Dr. Rakesh B. Bobba Dr. Eduardo Cotilla-Sanchez

Our Goal

- **Short-term**: Developing a method that takes cyber-physical dependency into account and assesses the risk of cyber-attack induced cascading failures.
- Long-term: Providing real-time situational awareness of threat to the system by characterizing "how far or close" a given grid system is to a cyber-induced cascading failure, and how to mitigate it.

Research Overview

Data Needed

- Physical Model
 - Bus-Branch -> Node-Breaker
 - Protection Schemes
- Cyber Model
 - Network Topology
 - Access/Firewall Rules

Previous Work

- Cosmic-based Cyber Physical Models for IEEE
 9-bus and 39-bus cases.
- Risk Metrics for:
 - Target Nodes (Ex: Relays)
 - Intermediate Nodes (Ex: HMIs)
 - Source Nodes (Ex: Attack Origins/Jump Hosts)
 - Total Security Exposure

Current Focus

- Risk Metrics for Cascading Outages
 - Compare configurations with respect to cyber risk for cascading outages

Single-bus-single-breaker Configuration

Bus-branch model

Node-breaker model

Ring-bus Configuration

Bus-branch model

Node-breaker model

Breaker-and-a-half Configuration

Bus-branch model

Double-bus-double-breaker Configuration

Bus-branch model

Node-breaker model

Example: IEEE Case 9

Example: IEEE Case 9

Types of Protection

- Overcurrent & directional overcurrent
- Under-voltage load shedding
- Under-frequency load shedding
- Distance
- Differential
- Phase balance

Protection Scheme Templates

Cyber Topology

- Synthetic but realistic network topology and access rules
- Synthetic but realistic vulnerability distributions

RTS-96 N-x Simulation Procedure

- N-1 simulations:
 - Secure for 93 out of 120 branch failures (with baseline RTS-96 data).
- N-1-1 simulations:
 - There are 7,140 combinations for 120 choose 2, and therefore, 14,280 permutations.
 - From 14,280 cases choose both first and second failure belong to those 93 secure branches.
 - 798 out of 14,280 N-1-1 simulations with two N-1 secure branches failures cause a certain physical impact.

N-1-1 Results

N-1-1 Results

First Failure		Second Failure	
Branch ID/From-To	Count for Times	Branch ID/From-To	Count for Times
100/312-323	58	100/312-323	60
22/112-123	38	11/107-108	51
56/209-212	36	101/313-323	32
11/107-108	30	22/112-123	28
101/313-323	30	18/110-112	26

Currently, we are working on...

- Fixing Cyber topology data format for RTS-96
- Top k actions to improve network's security posture for cascading outages
- Cyber topology for Poland model (2000+ buses)

Thank You! & Questions?

