ILLIXR Consortium

Democratizing XR research, development, and benchmarking

Sarita Adve and Muhammad Huzaifa University of Illinois at Urbana-Champaign illixr@cs.illinois.edu illixr.org

This work is supported in part by DARPA, NSF, and the Applications Driving Architecture (ADA) Research center (JUMP center co-sponsored by SRC & DARPA)

Team ILLIXR

ILLIXR students and developers

- Madhuparna Bhowmik
- Henry Che
- Rishi Desai
- Steven Gao
- Samuel Grayson
- Qinjun Jiang
- Muhammad Huzaifa
- Xutao Jiang
- Ying Jing
- Jae Lee

- Fang Lu
- Yihan Pang
- Joseph Ravichandran
- Giordano Salvador
- Bill Sherman
- Finn Sinclair
- Rahul Singh
- Boyuan Tian
- Lauren Wagner
- Henghzi Yuan
- Jeffrey Zhang

- Consultations
- Ameen Akeel
- Wei Cui
- Aleksandra Faust
- Liang Gao
- Rod Hooker
- Matt Horsnell
- Amit Jindal
- Steve LaValle
- Steve Lovegrove

- David Luebke
- Andrew Maimone
- Vegard Oye
- Maurizio Paganini
- Martin Persson
- Archontis Politis
- Eric Shaffer
- Paris Smaragdis
- Chris Widdowson

Founding consortium members: Arm, Meta Reality Labs, Micron, NVIDIA Founding sponsor: ADA research center, a DARPA/SRC JUMP center

Extended Reality (XR): The Next Interface

Virtual, Augmented, Mixed Reality The next computing interface Will transform science, medicine, education, ...

BUT orders of magnitude gap in power, performance, quality-of-experience between current and desired systems

Approximate	Current	Desired
Res (Mpixels)	7	200
Power (W)	~7	0.1
Weight (g)	500	10

XR Systems: Challenges

Orders of magnitude gap

Power, performance, quality-of-experience (QoE)

Diverse expertise

graphics, vision, audio, video, optics, haptics, ...

Cross-layer system co-design

hardware, compiler, OS, algorithm

Approximate	Current	Desired
Res (Mpixels)	7	200
Power (W)	~7	0.1
Weight (g)	500	10

Complex metrics

multiple, user-driven, end-to-end QoE metrics

Closed systems, few participants

No open reference systems or benchmarks

Large barrier to entry for open R&D

How can we democratize XR systems research, development, benchmarking?

ILLIXR: Illinois Extended Reality Testbed

ILLIXR: Open-source full system XR testbed

State-of-the-art XR components w/ modular runtime

OpenXR compatible

Extensive characterization and use for research

illixr.org

Huzaifa et al., IISWC'21 best paper, IEEE Micro Top Picks'22 (top 12 papers from 2021 architecture conferences)

+ KLIRR Debug View

Course 198 Gaserate (A.S. 154) 4. Sectors Sector 6 General (A.S. 150) 5. Sectors Sector 7 690 LUBI Drended Mindew

· realest closelization options W Follow Invations, point time 84.141 a set a set a set reason of their many makes to default tracking artistics Are fearing to prive a sub-Des attendation. Accels to percid out tracking universe In billion i universitar cirical In billion i universitar cirical Part para tapita valo cirical Part para partera (regi) 1.4 4004, s. 4004, i topotoj Part para partera (regi) 1.4 4004, s. 4004, i topotoj Part para partera (regi) 1.4 4004, s. 4004, s. 4004 Part para partera (regi) 1.4 4004, s. 4004, s. 4004 Part para partera (regi) 1.4 4004, s. 4004, s. 7004 1.4 4004, s. 4004, s. 7004 1.4 4004, s. 4004, s. 7004 1.4 4004 1.4 4004, s. 4004, s. 7004 1.4 4004

ILLIXR Consortium

ILLIXR Consortium w/ industry + academic partners

• Arm, Meta, Micron, North Star, NVIDIA, ...

Goals

- Reference open-source testbed
 - Components and interfaces
 - Modular, extensible runtime
 - Telemetry
- Benchmarking methodology
 - Applications, data sets
 - System configurations
 - Metrics
- Build XR systems research and development community

Now funded by NSF CISE community research infrastructure program Join us: illixr@cs.illinois.edu, illixr.org, discord, weekly meetings

Home

nda

Outline

- Introduction
- ILLIXR Description
- Evaluation and Implications
- Ongoing Research with ILLIXR
- Ongoing Work on ILLIXR Testbed
- Consortium Organization and Goals

ILLIXR Overview

Perception Pipeline

- Sensors: Camera, Inertial Measurement Unit (IMU)
- Visual Intertial Odometry (VIO)
 - Provides position and head orientation (pose)
- IMU Integrator
 - Provides high frequency pose estimates
- Pose Predictor
 - Extrapolates pose to future timestamp
- Scene Reconstruction
 - Uses RGB-Depth camera to build dense 3D map of world
- Eye Tracking

Visual Pipeline

- Asynchronous reprojection
 - Warp rendered frame to account for head movement during rendering
 - Uses latest pose estimate and prediction
 - Cuts motion-to-photon latency

- Lens distortion and chromatic aberration correction
 - Corrects for distortion due to curved lenses

- Computational holography
 - Vergence-accommodation conflict (VAC): eyes focused at fixed point, converge at different points
 - Computational displays w/ multiple focal planes can fix VAC: compute per-pixel phase shift

Audio Pipeline

- Audio encoding
 - Encodes multiple sound sources into Higher Order Ambisonics (HOA) soundfield
- Playback
 - Rotates and zooms HOA sound field for user's latest pose
 - Performs binauralization to account for user's ear, head, nose

BUT XR is not just a collection of components

It is a SYSTEM

XR System Dataflow

XR System Dataflow

Different components at different frequencies Multiple interacting pipelines Synchronous and asynchronous dependences Multiple quality of experience metrics

ILLIXR Runtime

Modular, flexible architecture

ILLIXR components are plugins

Separately compiled, dynamically loaded

Easily swap/add new components, implementations

Efficient, flexible communication interface

Component specifies event streams to publish, subscribe Synchronous or asynchronous consumers Copy-free, shared memory implementation

End-to-end system balances flexibility with efficiency

ILLIXR Applications

Can write XR applications directly to ILLIXR

ILLIXR Applications

Can write XR applications directly to ILLIXR

ILLIXR supports OpenXR applications

- Uses Monado implementation of OpenXR
- Today: Godot game engine with many apps
- Soon: Unity, Unreal, ...

End-to-End Quality Metrics

- Motion-to-photon latency
 - Time from head motion to display (currently w/o display latency)

- Image quality: SSIM and FLIP
- + Extensive telemetry: Frame rates, missed frames, time distributions, power, ...

ILLIXR Components and Systems Today

	Component	Algorithm	Implementation			
	Camera Camera	ZED SDK Intel RealSense SDK	C++ C++			
eline	IMU IMU	ZED SDK Intel RealSense SDK	C++ C++			
Perception Pipe	VIO VIO	OpenVINS Kimera-VIO	C++ C++			
	IMU Integrator IMU Integrator	RK4 GTSAM	C++ C++			
	Eye Tracking	RITnet	Python, CUDA			
	Scene Reconstruction Scene Reconstruction	ElasticFusion KinectFusion	C++, CUDA, GLSL C++, CUDA			
ine	Reprojection	VP-matrix reproject w/ pose	C++, GLSL			
bel	Lens Distortion	Mesh-based radial distortion	C++, GLSL			
ual I	Chromatic Aberration	Mesh-based radial distortion	C++, GLSL			
Vis	Adaptive Display	Weighted Gerchberg-Saxton	CUDA			
lio ine	Audio Encoding	Ambisonic encoding	C++			
Aud Pipel	Audio Playback	Ambisonic manipulation, binauralization	C++			

Systems Desktop PC Jetson Xavier

Outline

- Introduction
- ILLIXR Description
- Evaluation and Implications
- Ongoing Research with ILLIXR
- Ongoing Work on ILLIXR Testbed
- Consortium Organization and Goals

Results Summary

Execution Time & Distribution

Quality of Experience

Application	Desktop	Jetson-HP	Jetson-LP
Sponza	3.1 ± 1.1	13.5 ± 10.7	19.3 ± 14.5
Materials	3.1 ± 1.0	7.7 ± 2.7	16.4 ± 4.9
Platformer	3.0 ± 0.9	6.0 ± 1.9	11.3 ± 4.7
AR Demo	3.0 ± 0.9	5.6 ± 1.4	12.0 ± 3.4

Platform	SSIM	1-FLIP
Desktop	0.83 ± 0.04	0.86 ± 0.05
Jetson-HP	0.80 ± 0.05	0.85 ± 0.05
Jetson-LP	0.68 ± 0.09	0.65 ± 0.17

Power

Results Summary

Quality of Experience

Application	Desktop	Jetson-HP	Jetson-LP
Sponza	3.1 ± 1.1	13.5 ± 10.7	19.3 ± 14.5
Materials	3.1 ± 1.0	7.7 ± 2.7	16.4 ± 4.9
Platformer	3.0 ± 0.9	6.0 ± 1.9	11.3 ± 4.7
AR Demo	3.0 ± 0.9	5.6 ± 1.4	12.0 ± 3.4

First published performance/power/QoE results for end-to-end XR system

letson HP

letson LP

SYS

SOC

Power

Power

DDR

GPU

CPU

Power

Power

Power

Desktop

Platform	SSIM	1-FLIP
Desktop	0.83 ± 0.04	0.86 ± 0.05
Jetson-HP	0.80 ± 0.05	0.85 ± 0.05
Jetson-LP	0.68 ± 0.09	0.65 ± 0.17

Summary of Implications for System Designers

- Need to specialize hardware, software, system
- Must consider all application components in system together
- Must consider system-level hardware components; e.g., display and I/O
- Need to partition, allocate, and schedule system resources
- Must look at entire system to make QoE-driven tradeoffs
- Abundance of tasks and no single task dominates
 ⇒ Need automated techniques to determine what to accelerate
- Impractical to build accelerator for every task
 ⇒ Must build shared hardware
- Diversity of compute and memory primitives
 - \Rightarrow *Flexible* on-chip memory hierarchy
 - \Rightarrow *Flexible* accelerator communication interface
- Algorithms in flux
 - \Rightarrow Must design *programmable* hardware
- Different algorithms have different QoE vs. resource usage profiles
 ⇒End-to-end QoE driven approximate computing

Standalone Components

Task	Time	Computa	tion	Memory Patter	n			Task	Time	Computat	ion		Memo	sry Pattern	
Feature detection Detects new features in the new camera images	15%	Integer ste pyramid le	ncils per each svel	Locally dense ster dense and sparse	cil; globally mixed			Camera Processing Processes incoming camera depth image	5%	Bilateral fil rejection	ter; lnv	alid dept	h Dense : Image	sequential accesses	to depth
Feature matching Matches features across images	13%	Integer ste linear alge	ncils; GEMM; bra	Locally dense ster dense and sparse; random feature m	cil; globally mixed mixed dense and ap accesses			Image Processing Pre-processes RGB-D image for tracking and mapping	18%	Generation normal may intensity; in undistortio	of vert p. and i nage n; pose	ex map, mage	Global change RR.GO	ly dense; local stene from RGB.RGB – 3.BB	ili; layout
Estimates 6DOF pose using camera and IMU measurements	01.7	QR decom linear alge	iposition; GEMM; bra	and filter matrix a	cresses			Pose Estimation Estimates 6DOF pose	28%	ICP; photo geometric e	metric rror	stror;	Photor others dense	netric error is globa are globally sparse,	lly dense; locally
Other Miscellaneous tasks Task	10% Tit	Gaussian f	filter; histogram	Globally dense ste Memory F	ncil 'attern			Surfel Prediction Calculates active surfels in current frame	38%	Vertex and	fragme	nt shader	s Global	ly sparse; locally de	150
FBO FBO state management OpenGL State Undate	249	Frame	buffer bind and cle	ar Driver calls; communicat	CPU-GPU ion CPU-CPU			Map Fusion Updates map with new surfel information	11%	Vertex and	fragme	nt shader	s Global	ly sparse; locally de	16e
Sets up OpenGL state	010	drawca	all per eye	communicat	ion			Task		Time C	ompi	tation		Memor	v Pattern
Reprojection Applies reprojection transformation to image	225	6 matr MULs	ix-vector /vertex	Accesses un fragment bu accesses/fra	iform, vertex, and iffers; 3 texture gment			Normalization INT16 to FP32		7% E	lement	-wise F	P32 divis	ion Dense ro	w-major
Task		Time	Computation		Memory Patte	rn		Encoding Sample to soundfield		81% Y	[j][i] =	$D \times \lambda$	[<i>j</i>]	Dense co	lumn-major
Hologram-to-depth		57%	Transcendenta TD mide term	ls; FMADDs;	Dense row-majo	r; spa	ial locality in	mapping							
depth plane	: 10		TB-wide tree I	equetion	data; reduction	in sera	tchpad	Summation HOA soundfield summati	on	11% Y	[i][j]+	$= X_k[i$][j] ¥k	Dense ro	w-major
Sum Sums phase diffe from hologram-to-dept	rences h	< 0.1%	Tree reduction		Dense row-majo scratchpad	r; red	ction in		7	fash Retation icondicki rotati	Tin 20	e Sab-ta Psych filter	ek sacoustie	Computation FFT: frequency do- main curvelation;	Memory Pattern Batterly pattern for PET/IPET: dense rav-
Depth-to-hologram Propagates depth plan phase to pixel	е	43%	Transcendenta thread-local re	ls; FMADDs; duction	Dense row-majo pixels written or	r; no j 1ce	ixel reads;			sing pase		Applies domain HOA : Batate rels	frequency- filter rotation virtual chan-	IFFT Transcendentals: FMADDs	sequential accesses for convulution. Sparse column-major accesses; some tempora locality.
									2 5 0	feeen iomdfeld zos ning pase	- ⁵⁰			Linear algebra	Dense column-major sequential accesses
									T	Immediation	607			Identical to percluse	Identical to nevel page

Summary of Implications for System Designers

- Need to specialize hardware, software, system
- Must consider all application components in system together
- Must consider system-level hardware components; e.g., display and I/O
- Need to partition, allocate, and schedule system resources
- Must look at entire system to make QoE-driven tradeoffs

Standalone Components

ILLIXR = Rich playground for systems research Enables QoE-driven, end-to-end hardware-software-algorithm codesigned systems research

- Diversity of compute and memory primitives
 - \Rightarrow *Flexible* on-chip memory hierarchy
 - \Rightarrow *Flexible* accelerator communication interface
- Algorithms in flux
 - \Rightarrow Must design *programmable* hardware
- Different algorithms have different QoE vs. resource usage profiles
 ⇒End-to-end QoE driven approximate computing

Task	Time	Computz	tion	Memory Patter	11			Task	Tim	e Comp	utation
Feature detection Detects new features in the new camera images	15%	Integer ste pyramid le	ncils per each wel	Locally dense ster dense and sparse	cil; globally mixed			Camera Processing Processes incoming camera depth image	5%	Bilater rejectio	al filter; in a
Feature matching Matches features across images	13%	Integer ste linear alge	ncils; GEMM; bra	Locally dense ster dense and sporse; random feature m	cil: globally mixed mixed dense and ap accesses			Image Processing Pre-processes RGB-D image for tracking and mapping	18%	General normal intensit undiste	tion of ver map, and y; image etion; new
Filter Estimates 6DOF pose using camera and IMU measurements	62%	Gauss-Nev QR decou linear alge	vton refinement; iposition; GEMM; bra	Mixed dense and and filter matrix a	sparse feature map accesses			Pose Estimation Estimates 6DOF pose	28%	transfo ICP; pi geomet	rmation of hotometric ric error
Other Miscellaneous tasks Task	10% Tit	Gaussian : ne Comp	filter; histogram sutation	Globally dense ste Memory F	ncil Pattern			Surfel Prediction Calculates active surfels in current frame	38%	Vertex	and fragm
FBO FBO state management	249	Frame	buffer bind and cle	ar Driver calls: communicat	: CPU-GPU tion			Map Fusion Updates map with new surfel	11%	Vertex	and fragm
OpenGL State Update Sets up OpenGL state	549	Open(drawci	3L state updates; o all per eye	ne Driver calls; communicat	: CPU-GPU tion			information Task		Time	Comp
Reprojection Applies reprojection transformation to image	225	6 matr MULs	ix-vector /vertex	Accesses un fragment bu accesses/fra	iform, vertex, and iffers; 3 texture gment			Normalization INT16 to FP32		7%	Elemen
Task		Time	Computation		Memory Patte	rn		Encoding Sample to soundfield		81%	Y[j][i]
Hologram-to-depth Propagates pixel phase depth plane	e to	57%	Transcendenta TB-wide tree r	ls; FMADDs; eduction	Dense row-majo pixel data; temp data; reduction	r; spat oral le in scra	ial locality in ocality in depth stchpad	mapping Summation HOA soundfield summat	ion	11%	Y[i][j]+
Sum Sums phase diffe from hologram-to-dept	rences h	< 0.1%	Tree reduction		Dense row-majo scratchpad	r; redi	action in		-	Task Retation Soundleid r	utation 35
Depth-to-hologram Propagates depth plan phase to pixel	e	43%	Transcendenta thread-local re	ls; FMADDs; duction	Dense row-majo pixels written or	r; no I ice	pixel reads;			using pose	
										Zecen Soundfield ming none	zoom 52

Ongoing Research with ILLIXR

- Representing heterogenous parallelism in software
- Automated selection and generation of accelerator hardware and software
- Accelerator communication interfaces
- Automated approximation selection
- Cross-component co-design
- QoE-driven scheduling
- Computation offload
- QoE metrics
- XR algorithms
- Eye tracking + Holograms [Sivasubramanium et al., Micro'21]

Ongoing Work on Testbed

- New components: spatial reprojection, hand tracking, foveated rendering, ...
- Off-loading, streaming, multiparty XR (ILLIXR + CONIX ARENA)
- Broaden hardware/software platforms supported: Dockerization, Android, ...
- Create and curate datasets and applications

• Incorporate research results

Outline

- Introduction
- ILLIXR Description
- Evaluation and Implications
- Ongoing Research with ILLIXR
- Ongoing Work on ILLIXR Testbed
- Consortium Organization and Goals

Consortium Goals

- Reference open-source testbed
 - Components and interfaces
 - Modular, extensible runtime
 - Telemetry
- Benchmarking methodology
 - Applications, datasets
 - System configurations
 - Metrics
- Build XR systems research and development community

Weekly open meetings and working groups on various topics

Executive Committee

Responsibilities

- Oversight of overall direction of the project
- Executive committee membership
- Approving working groups and their chairs
- Approving working group recommendations and outcomes
- Setting project policies, including governance and membership agreements
- Outreach for the project

Current members

- Sarita Adve, University of Illinois, Chair
- Muhammad Huzaifa, University of Illinois, Vice-Chair
- Ameen Akel, Micron
- Sean Eilert, Micron
- Art Goldberg, Arm
- Rod Hooker, Meta
- Matt Horsnell, Arm
- Vasileios Laganakos, Arm
- David Luebke, Nvidia
- Maurizio Paganini, Meta
- Anthony Rowe, CMU

Advisory Board

Current members

- Ameen Akel
- Sarita Adve
- Vikram Adve
- Valeria Bertacco
- David Brooks
- Rod Hooker
- Matt Horsnell
- Muhammad Huzaifa
- Steve LaValle
- David Luebke
- Sharad Malik
- Franziska Roesner
- Anthony Rowe
- Gu-Yeon Wei

Providing overall strategic vision and direction of the consortium

Working Groups

 Any representative of a consortium member organization may attend working group meetings

- Consortium members have voting privileges in the working groups (one vote per organization)
- Only consortium member representatives may chair a working group

• Participants from non-member organizations are welcome to join a working group, subject to lightweight approval and without voting or chair privileges

Planned Working Groups

- Metrics
- Interfaces
- Components
- Computation offload
- Distributed XR
- Configurations and benchmark reporting
- Applications
- Datasets
- Infrastructure
- Research related

Next week

• Intro to ARENA (distributed XR), integrating w/ ILLIXR

Anthony Rowe, CMU

ILLIXR Consortium

illixr.org

Goals

- Reference open-source testbed
- Benchmarking methodology
- Build XR systems R&D community

Join us: illixr@cs.illinois.edu, illixr.org, discord, weekly meetings

