

Team 10: Developing a Conductive Prosthetic Finger Marissa Cowan, Daria Wendell, Josh Chan, and Ryan Alvin Bioengineering Department, The Grainger College of Engineering, University of Illinois Urbana-Champaign

Identified Need

- Technology throughout the world is rapidly changing and more devices/machines are relying on touch screen technology.
- Touchscreens work by detecting a change in capacitance from a finger or conductive material being placed near it
- Amputees lack a seamless way to use touch screen devices
- Prosthetics lack conductive properties and the ability to handle a capacitive load
- Current solutions involve external components
- Glove with conductive threads
- Stylus
- Providing amputees with a prosthetic with conductive abilities would improve their quality of life
- Bilateral amputees have expressed great concern concerning the difficulty they have using touch screens with their current prosthetics
- Only prosthetics with conductive properties on the market are for finger or partial-hand amputees.

Conductive gloves [2]

Design Criteria

Compatible with a variety of touch screens

Smooth and sleek finish. Conductive material is not visible

Durable. Can withstand years of use

Ease of use

Prototype - Carbon Fiber

Concept

• Carbon fiber shards create a conductive network when connected [3]

Test

• Combine PSYONIC's ratio for carbon fiber and silicone. Mold using standard procedure

Outcome

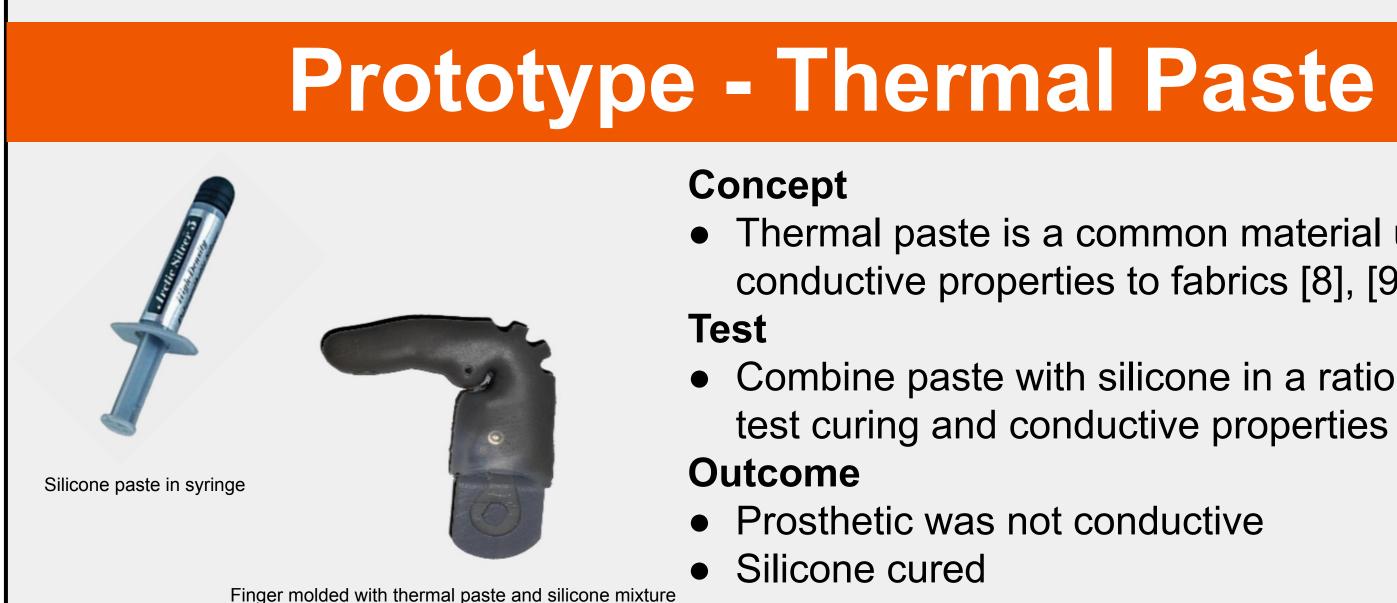
- Prosthetic was conductive
- Thumb prosthetics need additional conductive silicone to retain conductive properties

Prototype - Graphite Powder

Concept Test

- Outcome

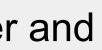
Prototype - Wire


Concept

• Wire is a widely known source of conductivity [6], [7] Test

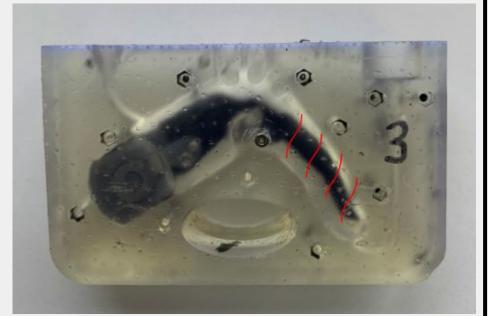
• Wrap a wire around a bone and proceed with the silicone molding process to determine curing and conductivity properties

Outcome


- The wire was visible through the silicone
- Prosthetic was not conductive
- Silicone cured



Silicone must be flexible to ensure low PSYONIC Energy Units (PEUs)


Carbon fiber thumb on iPhone

3D Printed finger mold in

• Graphite powder is a commonly used substance for conductive applications [4], [5]

• Ratios of graphite powder and silicone ranging from 0.20%-1% to determine curing and conductivity properties

None of the ratios produced conductive silicone At 0.9% and 1% the silicone had difficult effectively curing

finger bone in mold with red lines to simulate wire placement

• Thermal paste is a common material used to add conductive properties to fabrics [8], [9]

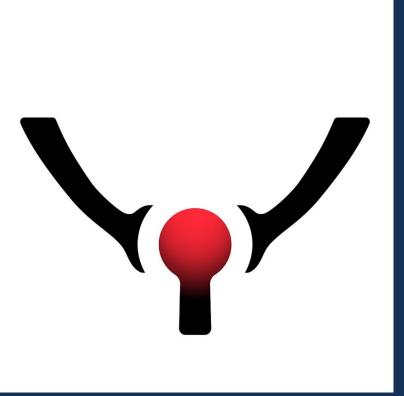
- Combine paste with silicone in a ratio of 2% to test curing and conductive properties
- Prosthetic was not conductive

Prototype Testing + Results

- Thumbs with carbon fiber shards were conductive 50% of tests • A change in procedure was identified necessary after first round of tests
- finger needs
- Fingers made with carbon fiber shards had high correlation between success rate and years of molding experience
- Graphite powder, wire, and thermal paste were not viable solutions

- manufacturability
- Edit thumb mold to improve conductive abilities Conduct tests with multiple brands and types of silicone to ensure optimal silicone choice
- Distribute conductive prosthetics to PSYONIC
- patients to receive patient feedback Improve design based on patient feedback

Regulation


ASTM A1093

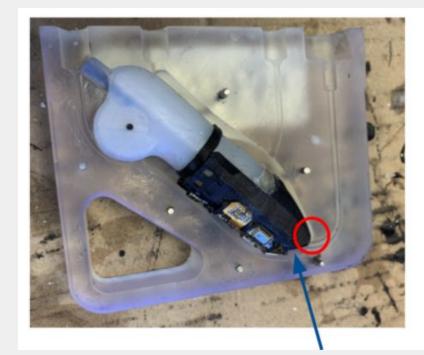
JAI100431

Acknowledgements & References

We acknowledge the following for their support & guidance:

Aadeel Akhtar, Valentino Wilson, James Austin, Dhipak BalaLucy Zhang, and Preston Njapa

• Fingers with carbon fiber shards added to the silicone were conductive 100% of tests


• Thumbs require double the amount of silicone infused with carbon fiber shards a

Prosthetic finger on iPhone

Results

Future Plans

Improve molding process to increase

Mold modification to improve process

Engineering Standards

Relevance to Design Handling of conductive materials, primarily metals Properties of carbon fiber and composites combined with

carbon fiber

Full Documentation

Poster References

