Team 1: Design of a Check Valve Foley Catheter System to Prevent CAUTIS

Abhishek Bhattacharjee, Parth Shah, Will Walton

Bioengineering Department, The Grainger College of Engineering, University of Illinois Urbana-Champaign

Identified Need

Patients who use catheters for several days need a way to reduce the risk of urinary reflux in order to reduce instances of catheter associated urinary tract infections (CAUTIs).

- Urinary backflow from extended periods of catheter use cause these infections
- Roughly 75% of UTIs acquired in hospitals are associated with a urinary catheter (CDC, 2015).

Design Criteria	
Need	Measurable Criteria
Facilitate forward flow	%forward flow in relation to a normal catheter \rightarrow forward flow is reduced at most by 15-20% in relation to normal catheter flow
Prevent Backflow	%backflow as a function of forward flow \rightarrow max backwards flow is 5% of forward flow
Minimize cost	%cost increase in relation to a normal catheter \rightarrow max increase is 15-20%
Ease of Use	Catheter insertion process should not change

Prototype Testing + Results Backflow Behavior for Various Valve Types ml/sec 0.3 V2 Custom Plastic Metal Clearview V1 Custom Spring-Ball Spring-Bal Socket Valve Passive Valve Passive Valve Inline Valu

Engineering Standards

ASTM - F263-19 Specification for Foley Catheter

ASTM F2475-20: Biocompatibility of Packaging Materials

ASTM D6954-18: Testing Plastics that Degrade in the Environment by a Combo of Oxidation and Biodegradation

Overall Findings

- Backflow testing met our criteria in most cases
- Our valves can be constructed for ~\$0.36-0.40
- Valves integrate directly into existing catheter systems
- Valve connectors and interior finish need to be refined
- Forward flow characteristics need to be tested/verified

Future Directions

- Remanufacture prototype with resin 3D printing
- Evaluate viability using live bacterial culture

Acknowledgements & References

Centers for Disease Control and Prevention. (2015, October 16). Catheter-associated urinary tract infections (CAUTI). Centers for Disease Control and Prevention. Retrieved October 5, 2021, from <u>https://www.cdc.gov/hai/ca_uti/uti.html</u>.

ASTM (2019, April 26). ASTM F623-19 Standard Performance Specification for Foley Catheter. ASTM. Retrieved October 5, 2021