
ILLIXR: Enabling End-to-End Extended Reality Research

Muhammad Huzaifa, Rishi Desai, Samuel Grayson, Xutao Jiang, Ying Jing, Jae Lee, Fang Lu, Yihan Pang,
Joseph Ravichandran, Finn Sinclair, Boyuan Tian, Hengzhi Yuan, Jeffrey Zhang, and Sarita V. Adve

University of Illinois at Urbana-Champaign
illixr@cs.illinois.edu

Abstract—An increasing number of edge systems have large computational
demands, stringent resource constraints, and end-to-end quality-driven
goodness metrics. Architects have embraced domain-specific accelerators to
meet the demands of such systems. We make the case for research that shifts
emphasis from domain-specific accelerators to domain-specific systems, with
a consequent shift from evaluations using benchmarks that are collections
of independent applications to those using testbeds that are full integrated
systems. We describe extended reality (XR) as an exciting domain motivating
such domain-specific systems research, but hampered by the lack of an
end-to-end evaluation testbed.

We present ILLIXR (Illinois Extended Reality testbed), the first fully open
source XR system and research testbed. ILLIXR enables system innovations
with end-to-end co-designed hardware, compiler, OS, and algorithm, and
driven by end-user perceived quality-of-experience (QoE) metrics. Using
ILLIXR, we perform the first comprehensive quantitative analysis of
performance, power, and QoE for a complete XR system and its individual
components. We describe several implications of our results that propel new
directions in architecture, systems, and algorithm research for domain-specific
systems in general, and XR in particular, all enabled by ILLIXR.

I. INTRODUCTION

Recent years have seen the convergence of multiple disruptive trends
to fundamentally change computer systems: (1) With the end of Dennard
scaling and Moore’s law, application-driven specialization has emerged
as a key architectural technique to meet the requirements of emerging
applications, (2) computing and data availability have reached an inflection
point that is enabling a number of new application domains, and (3) these
applications are increasingly deployed on resource-constrained edge devices,
where they interface directly with the end-user and the physical world.

In response to these trends, our research conferences have seen an explo-
sion of papers on efficient accelerators, many focused on machine learning.
To truly achieve the promise of efficient domain-specific edge computing,
however, will require architects to broaden their portfolio from specialization
for individual accelerators for individual applications to specialization for
domain-specific systems. Such systems may consist of multiple interacting
sub-domains (or applications), requiring multiple accelerators that interact
with each other in myriad ways to collectively meet end-user demands. Pro-
gramming languages and OS researchers must also grapple with the hetero-
geneity of such domain-specific systems, developing scalable methods for
compilation, scheduling, and resource management. Furthermore, it is likely
that meeting the end-user quality demands of such systems will require co-
designing the hardware, compiler, and OS along with the application [1], [2].
Case for Extended Reality as a driving domain: The following
observations make the case that virtual, augmented, and mixed reality,
collectively referred to as extended reality (XR),1 is a rich domain that
can propel research needed for this era of end-to-end quality-driven,
resource-constrained, co-designed domain-specific edge systems:
(1) Pervasive: XR will transform many aspects of our lives, including
teaching, science, medicine, entertainment, and more. Indeed, XR is

1Virtual reality (VR) immerses the user in a completely digital environment.
Augmented Reality (AR) enhances the user’s real world with overlaid digital content.
Mixed reality (MR) goes beyond AR in enabling the user to interact with virtual
objects in their real world.

envisioned to be the next interface for most of computing [3]–[5].
(2) Challenging demands: While XR systems exist today, they are far
from providing a tetherless experience approaching perceptual abilities of
humans. There is a gap of several orders of magnitude between what is
needed and achievable in performance, power, and usability, giving systems
researchers a potentially rich space to innovate. Table I summarizes various
system-level quality related metrics for state-of-the-art XR devices and the
aspiration for ideal future devices.
(3) Multiple and diverse components: XR involves several diverse
sub-domains — computer vision, robotics, graphics, machine learning,
optics, audio, and video — making it challenging to design a system that
executes each one well while respecting the resource constraints.
(4) Full-stack implications: The combination of real-time constraints,
complex interacting pipelines, and ever-changing algorithms creates a need
for full stack optimizations involving the hardware, compiler, operating
system, and algorithm [2].
(5) Flexible accuracy for end-to-end user experience: The end user being
a human with limited perception enables a rich space of accuracy-aware
resource trade-offs, but requires the ability to quantify impact on end-to-end
experience.
Case for an XR system testbed: A key obstacle to architecture and sys-
tems research for XR is that there are no open source benchmarks providing
the entire XR workflow to drive such research. While there exist open
source codes for some individual components of the XR workflow (typically
developed by domain researchers), there is no integrated suite that enables
researching an XR system. As we move from the era of general-purpose,
homogeneous cores on chip to domain-specific, heterogeneous system-on-
chip architectures, benchmarks need to follow the same trajectory. While
previous benchmarks comprising of suites of independent applications (e.g.,
Parsec [6], Rodinia [7], SPEC [8], [9], SPLASH [10]–[12], and more)
sufficed to evaluate general-purpose single- and multicore architectures,
there is now a need for a full-system-benchmark methodology, better viewed
as a full system testbed, to design and evaluate system-on-chip architectures.
Such a methodology must bring together the diversity of components that
will interact with each other in the domain-specific system and also be
flexible and extensible to accept future new components.

An XR full-system-benchmark or testbed will continue to enable
traditional research for accelerating a given XR component with
conventional metrics such as power, performance, and area for that
component, but will additionally allow evaluations for the end-to-end impact
on the system. More importantly, the integrated system will enable new
research that co-designs acceleration of its multiple, diverse, and demanding
components across the full stack, driven by end-to-end user experience.
Challenges and contributions: This paper presents ILLIXR (Illinois
Extended Reality testbed), the first fully open-source XR system and
testbed; the first detailed quantitative characterization of performance,
power, and quality-of-experience (QoE) metrics for a complete XR system
on desktop and embedded class machines; and several resulting future
directions for architecture and systems research that are enabled by ILLIXR.

There were two broad challenges in the development of ILLIXR.

First, ILLIXR required expertise in a large number of sub-domains (e.g.,
computer vision, robotics, graphics, optics, and audio). We consulted with
many academic and industry experts in these sub-domains and XR systems
(Section VIII). Through these discussions, we identified a representative
XR workflow with state-of-the-art algorithms and open source codes
for its constituent components, which we integrated into the ILLIXR
testbed. ILLIXR has now been vetted through presentations to several XR
industry and academic groups and events (e.g., [13]) and is the basis of
an industry-backed consortium to enable XR research and standardize XR
systems benchmarking [14].

Second, until recently, commercial XR devices had proprietary interfaces.
For example, the interface between an Oculus head mounted device (HMD)
runtime and the Unity or Unreal game engines that run on the HMD
has been closed as are the interfaces between the different components
within the HMD runtime. OpenXR [15], an open standard, was released
in July 2019 to partly address this problem by providing a standard for
XR device runtimes to interface with the applications that run on them.
ILLIXR leverages Monado [16], an open implementation of OpenXR,
to provide an OpenXR compliant XR system. However, OpenXR is
still evolving, it does not address the problem of interfaces between
the different components within an XR system, and there were limited
OpenXR compliant applications (e.g., game engines and games) during the
development of ILLIXR. Nevertheless, we are able to report results with
sophisticated applications running on ILLIXR, and the rapidly growing
popularity of OpenXR opens up a rich space of applications that ILLIXR
can support to drive future research.

Specifically, this work makes the following contributions.
(1) We develop ILLIXR, the first fully open-source XR system and

research testbed, consisting of a representative XR workflow (i) with
state-of-the-art components, (ii) integrated with a modular and extensible
multithreaded runtime that easily allows new components (or new imple-
mentations of existing components) to be added, (iii) providing an OpenXR
compliant interface to XR applications (e.g., game engines), and (iv) with
the ability to report (and trade-off) end-to-end quality of experience (QoE)
metrics. The ILLIXR components represent the sub-domains of robotics
(odometry or SLAM), computer vision (scene reconstruction), machine
learning (eye tracking), image processing (camera), graphics (reprojection),
optics (lens distortion, chromatic abberation correction), audio (3D audio
encoding and decoding), and displays (holographic displays).

(2) We present the first detailed quantitative characterization of
performance, power, and QoE metrics for a complete XR system. We
conduct our analysis on desktop and embedded class machines with CPUs
and GPUs, driven by a game engine running representative VR and AR
applications. Overall, we find that current systems are far from the needs
of future devices, making a case for efficiency through techniques such
as specialization, codesign, and approximation.

(3) Our system-level analysis shows a wide variation in the resource
utilization of different components. Although components with high
resource utilization should clearly be targeted for optimization, components
with relatively low utilization are also critical due to their impact on QoE.

(4) Power breakdowns show that CPUs, GPUs, and memories are only
part of the power consumption. The rest of the SoC and system logic,
including data movement for displays and sensors is a major component
as well, motivating technologies such as on-sensor computing.

(5) XR components are diverse in their use of CPU, GPU compute,
and GPU graphics, and exhibit a range of IPC and system bottlenecks.
Analyzing their compute and memory characteristics, we find a variety
of patterns and subtasks, with none dominating. The number and diversity
of these patterns pose a research question for the granularity at which
accelerators should be designed and whether and how they should be
shared among different components. These observations motivate research

TABLE I: Ideal requirements of VR and AR vs. state-of-the-art devices, Varjo
VR-3 for VR and Microsoft HoloLens 2 for AR. We identified the values of
the various aspirational metrics through an extensive survey of the literature [3],
[17], [18]. VR devices are typically larger and so afford more power and thermal
headroom. The Varjo VR-3 offloads most of its work to an attached server,
so its power and area values are not meaningful. The ideal case requirements
for power, area, and weight are based on current devices which are considered
close to ideal in these (but not other) respects – Snapdragon 835 in the Oculus
Quest VR headset and APQ8009w in the North Focals small AR glasses.

Metric Varjo VR-3 Ideal VR Microsoft Ideal AR
[19] [17], [20] HoloLens 2 [17], [20], [21]

Resolution (MPixels) 15.7 200 4.4 [22] 200
115 Full: 52 diagonal Full:

Field-of-view 165×175 [23], [24] 165×175
(Degrees) Stereo: Stereo:

120×135 120×135
Refresh rate (Hz) 90 90 – 144 120 [25] 90 – 144
Motion-to-photon < 20 < 20 < 9 [26] < 5

latency (ms)
Power (W) N/A 1 – 2 > 7 [27]–[29] 0.1 – 0.2

Silicon area (mm2) N/A 100 – 200 > 173 [27], [30] < 100
Weight (grams) 944 100 – 200 566 [22] 10s

in automated tools to identify acceleratable primitives, architectures for
communication between accelerators, and accelerator software interfaces
and programming models.

(6) Most components exhibit significant variability in per-frame execution
time due to input-dependence or resource contention, thereby making it chal-
lenging to schedule and allocate shared resources. Further, a large number
of system parameters need to be tuned for an optimal XR experience with
different resource usage trade-offs. The current process is mostly ad hoc and
exacerbated by the above variability. These observations motivate research
on QoE-driven resource management, scheduling, and approximation.

Overall, this work provides the architecture, systems, and XR algorithms
research community with a one-of-a-kind infrastructure and foundational
analyses to enable new research within each layer of the system stack or
co-designed across the stack, impacting a variety of domain-specific design
methodologies in general and for XR in particular.

ILLIXR is fully open source and is designed to be extensible so
that the broader community can easily contribute new components and
features and new implementations of current ones. The current ILLIXR
code repository [14] consists of over 100K lines of code for the main
components, another 80K for the OpenXR interface implementation [16],
several XR applications and an open source game engine, and continues
to grow with new components and algorithms. The appendix provides
information about the artifacts used in this paper (evaluated and accepted
for the availability criterion). We have formed the ILLIXR consortium
to manage the ongoing development of ILLIXR, including community
contributions and further standardization of XR benchmarking [14].

II. THE ILLIXR SYSTEM

Figure 1 presents the ILLIXR system. ILLIXR captures state-of-the-art
components that belong to an XR runtime such as Oculus VR (OVR)
and are shipped with an XR headset. Applications, often built using a
game engine, are separate from the XR system or runtime, and interface
with it using the runtime’s API. For example, a game developed on the
Unity game engine for an Oculus headset runs on top of OVR, querying
information from OVR and submitting rendered frames to it using the OVR
API (recently replaced by the OpenXR API). Analogously, applications
interface with ILLIXR using the OpenXR API [15]. Consequently, ILLIXR
does not include components from the application, but captures the
performance impact of the application running on ILLIXR. We collectively
refer to all application-level tasks (e.g., button-input handling, scene
simulation, physics, rendering, etc.) as "application" in the rest of this paper.

Fig. 1: The ILLIXR system and its relation to XR applications, the OpenXR
interface, and mobile platforms.

Fig. 2: Interactions between ILLIXR components. The left part shows an
ideal ILLIXR execution schedule and the right part shows inter-component
dependencies that the ILLIXR scheduler must maintain (§II-B). Solid arrows
are synchronous and dashed are asynchronous dependencies.

As shown in Figure 1, ILLIXR consists of three pipelines – perception,
visual, and audio – each containing several components and interacting
with each other through the ILLIXR communication interface and runtime.
Figure 2 illustrates these interactions – the left side presents a timeline for
an ideal schedule for the different components and the right side shows the
dependencies between the components (enforced by the ILLIXR runtime).
We distilled this workflow from multiple sources that describe different
parts of a typical VR, AR, or MR pipeline, including conversations with
several experts from academia and industry (§I).

ILLIXR represents a state-of-the-art system capable of running
sophisticated XR applications and providing an end-to-end XR user
experience. Nevertheless, XR is an emerging and evolving domain and
no XR experimental testbed or commercial device can be construed
as complete in the traditional sense. Compared to specific commercial
headsets today, ILLIXR may miss a component (e.g., Oculus Quest 2
provides hand tracking) and/or it may have additional or more advanced
components (e.g., except for HoloLens 2, most current XR systems do not
have scene reconstruction). Further, while ILLIXR supports state-of-the-art
algorithms for its components, new algorithms are continuously evolving.
ILLIXR supports a modular and extensible design that makes it relatively
easy to swap and add new components.

The system presented here assumes all computation is done on the XR
device (i.e., no offloading to other edge devices or to the cloud) and we
assume a single user (i.e., no communication with multiple XR devices).
This is similar to current standalone headsets such as Oculus Quest 2.2

§II-A next describes the three ILLIXR pipelines and their components,
§II-B describes the modular runtime architecture that integrates these com-
ponents, and §II-C describes the metrics and telemetry support in ILLIXR.
Table II summarizes the algorithm and implementation information for each

2We are working on supporting networking, edge and cloud work partitioning,
and multiparty XR within ILLIXR. Since component interfaces are well-specified
and modular, a local component can be easily swapped with a remote one without
modifying the rest of the system. We have already implemented offloading some
components and plan a generalized offloading module that any component can use.

TABLE II: ILLIXR component algorithms and implementations. GLSL
stands for OpenGL Shading Language. We used the default CPU-GPU
partitioning in the reference implementation of each component. * represents
the implementation alternative for which we provide detailed results.

Component Algorithm Implementation
Perception Pipeline

Camera ZED SDK* [31] C++
Camera Intel RealSense SDK [32] C++
IMU ZED SDK* [31] C++
IMU Intel RealSense SDK [32] C++
VIO OpenVINS* [33] C++
VIO Kimera-VIO [34] C++
IMU Integrator RK4* [33] C++
IMU Integrator GTSAM [35] C++
Eye Tracking RITnet [36] Python,CUDA
Scene Reconstruction ElasticFusion* [37] C++,CUDA,GLSL
Scene Reconstruction KinectFusion [38] C++, CUDA

Visual Pipeline

Reprojection VP-matrix reprojection with pose [39] C++, GLSL
Lens Distortion Mesh-based radial distortion [39] C++, GLSL
Chromatic Aberration Mesh-based radial distortion [39] C++, GLSL
Adaptive display Weighted Gerchberg–Saxton [40] CUDA

Audio Pipeline

Audio Encoding Ambisonic encoding [41] C++
Audio Playback Ambisonic manipulation,

binauralization [41]
C++

component in the three pipelines. ILLIXR already supports multiple, easily
interchangeable alternatives for some components; for lack of space, we pick
one alternative, indicated by a * in the table, for detailed results in this paper.

A. Pipelines

The perception pipeline translates the user’s physical motion into
information understandable to the rest of the system so it can render and
play the new scene and sound for the user’s new position. The input to
this part comes from sensors such as cameras and an inertial measurement
unit (IMU) to provide the user’s acceleration and angular velocity. The
processing components include camera and IMU processing, head
tracking or VIO (Visual Inertial Odometry) for obtaining low frequency
but precise estimates of the user’s pose (the position and orientation of their
head), IMU integration for obtaining high frequency pose estimates, eye
tracking for determining the gaze of the user, and scene reconstruction
for generating a 3D model of the user’s surroundings.

The visual pipeline takes information about the user’s new pose from the
perception pipeline and the submitted frame from the application, and pro-
duces the final display using two components. Asynchronous reprojection
corrects the rendered image submitted by the application for optical distor-
tions and compensates for latency from the application’s rendering process
by reprojecting the frame from the perspective of the freshly read/predicted
pose [39].3 The version of ILLIXR used here implements rotational repro-
jection or TimeWarp [39]) (we have since also implemented translational
reprojection). ILLIXR supports computational holography [42] to present
multiple focal planes to the user [43] (adaptive displays).4

The audio pipeline is responsible for generating spatial audio and is
composed of audio encoding, which encodes monophonic sound sources
into a virtual soundfield [45], and audio playback, which adds localization
cues to the sound [46].

3We provide the ability to predict the pose when the frame will actually be
displayed and reproject based on the predicted pose.

4Although we can generate holograms, we do not yet have a holographic display
setup with SLMs and other optical elements, and there are no general purpose pre-
assembled off-the-shelf holographic displays available. We currently therefore display
the generated frames on a standard LCD monitor or a North Star AR headest [44].

B. Runtime and Communication Framework

Figure 2 shows an ideal execution timeline for the different XR
components and their temporal dependencies. On the left, each colored
rectangle boundary represents the period of the respective component —
ideally, the component would finish execution before its next invocation.
The right side shows a static representation of the dependencies among the
components, illustrating the interaction between the different pipelines.5

We say a consumer component exhibits a synchronous dependence on
a producer component if the former has to wait for the last invocation
of the latter to complete (solid arrow). An asynchronous dependence is
softer, where the consumer can start execution with data from a previously
complete invocation of the producer component (dashed arrow).

An XR system is unlikely to follow the idealized schedule due to shared
and constrained resources and variable running times. Thus, an explicit
runtime is needed for effective resource management and scheduling while
maintaining the inter-component dependencies, resource constraints, and
quality of experience. The ILLIXR runtime currently runs on Linux – it
schedules resources while enforcing dependencies among the components,
in part deferring to the Linux kernel and GPU driver.

To achieve extensibility and modularity, ILLIXR provides a well-defined
communication framework, with components implemented as plugins
supported by a plugin-loader.

The communication framework is structured around event streams.
Event streams support writes, asynchronous reads, and synchronous reads.
Synchronous reads allow a consumer to see every value produced by the pro-
ducer, while asynchronous reads allow a consumer to ask for the latest value.

Plugins are distributed as shared-object files for the runtime to load. The
runtime gives the plugins access to other plugins but in a limited sense; they
can only interact through event streams. This architecture allows for mod-
ularity. Each component in Table II is implemented in its own plugin. Each
plugin is interchangeable with another as long as it complies with the event-
stream interface. Future researchers can test alternative implementations of
a single plugin without needing to reinvent the rest of the system. Devel-
opment can iterate quickly, because plugins are compiled independently.

ILLIXR is supported as a device driver in the Monado OpenXR
runtime [16]. This allows ILLIXR to run OpenXR applications, including
those developed using game engines such as Unity, Unreal, and Godot
(currently only Godot and Unreal have OpenXR support on Linux).

Finally, although ILLIXR supports live sensor inputs (e.g., through
cameras and IMUs) and an HMD display, it does not require such
external hardware. To enable universal use and ease experimentation,
the only requirement is a computer (desktop/laptop/embedded board).
Offline, pre-recorded datasets can be fed to all parts of ILLIXR due to
its well-defined and modular communication interfaces. As an example,
ILLIXR’s offline camera+IMU component reads from a pre-recorded
dataset and publishes to the same output stream as a live camera+IMU
component, appearing indistinguishable from a real camera/IMU to the
rest of the system. Similarly, ILLIXR does not require an HMD and can
display the final stereoscopic images to a regular monitor.

C. Metrics

ILLIXR provides several metrics to evaluate the goodness of the
system. In addition to reporting conventional performance metrics such
as per-component frame rate, per-component execution time, and power-
related metrics, ILLIXR reports several QoE metrics: 1) motion-to-photon
latency [47], a standard measure of the lag between user motion and image
updates; 2) Structural Similarity Index Measure (SSIM) [48], one of the

5An additional constraint is that reprojection should be scheduled as late as
possible (before the next vsync) so it has the freshest pose to generate the reprojected
frame to be finally displayed.

most commonly used image quality metrics in XR studies [49]–[51]; and
3) FLIP [52], a recently introduced image quality metric that addresses
shortcomings of SSIM.

While ILLIXR currently implements SSIM and FLIP, its pose and image
collection infrastructure is generic and extensible, enabling evaluation
of other (evolving) metrics for image or video quality. This is important
as such metrics for XR are still an active area of research. Notably, both
SSIM and FLIP are image metrics, whereas the final output of the visual
pipeline is a video, requiring consideration of aspects such as temporal
coherence and smoothness (jitter) as well. For instance, VMAF [53] and
Video ATLAS [54] have made important steps in this direction.

We do not yet compute a quality metric for audio beyond bitrate, but
plan to add the recently developed AMBIQUAL [55].

III. EXPERIMENTAL METHODOLOGY

The goals of our experiments are to quantitatively show that (1) XR
presents a rich opportunity for computer architecture and systems research
in domain-specific edge systems; (2) fully exploiting this opportunity
requires an end-to-end system that models the complex, interacting pipelines
in an XR workflow; and (3) ILLIXR is a unique testbed that provides such
an end-to-end system, enabling new research directions in domain-specific
edge systems architecture in general and for XR in particular.

Towards the above goals, we perform a comprehensive characterization
of a live end-to-end ILLIXR system on multiple hardware platforms with
representative XR workloads. We also characterize standalone components
of ILLIXR using appropriate component-specific off-the-shelf datasets.
This section details our experimental setup.

A. Experimental Setup

There are no existing systems that meet all the aspirational performance,
power, and quality criteria for a fully mobile XR experience as summarized
in Table I. For our characterization, we chose to run ILLIXR on two
hardware platforms, with three total configurations, representing a broad
spectrum of power-performance tradeoffs and current XR devices.
A high-end desktop platform: We used a state-of-the-art desktop system
with an Intel Xeon E-2236 CPU (6C12T) and a discrete NVIDIA RTX
2080 GPU. This platform’s thermal design power (TDP) rating is far above
what is deemed acceptable for a mobile XR system, but it is representative
of the platforms on which current tethered systems run (e.g., Varjo VR-3
as in Table I) and it can be viewed as an approximate upper bound for
performance of CPU+GPU based near-future embedded (mobile) systems.
An embedded platform with two configurations: We used an NVIDIA
Jetson AGX Xavier development board [56] consisting of an Arm CPU
(8C8T) and an NVIDIA Volta GPU. All experiments were run with the
Jetson in 10 Watt mode, the lowest possible preset. We used two different
configurations – a high performance one (Jetson-HP) and a low power
one (Jetson-LP). We used the maximum available clock frequencies for
Jetson-HP and half those for Jetson-LP. These configurations approximate
the hardware and/or the TDP rating of several commercial mobile XR
devices. For example, Magic Leap One [57] used a Jetson TX2 [58],
which is similar in design and TDP to our Xavier configuration. HoloLens
2 [27]–[29] and the Qualcomm Snapdragon 835 [59] used in Oculus
Quest [60] have TDPs in the same range as our two Jetson configurations.
I/O setup: For the live end-to-end ILLIXR system experiments, our I/O
setup is as follows. For the perception pipeline, we connected a ZED Mini
camera [61] to the above platforms via a USB-C cable. A user walked in
our lab with the camera, providing live camera and IMU input (Table II)
to ILLIXR. For the visual pipeline, we run representative VR and AR
applications on a game engine on ILLIXR (§III-C) – these applications
interact with the perception pipeline to provide the visual pipeline with
the image frames to display.

TABLE III: Key ILLIXR parameters that required manual system-level tuning.
Several other parameters were tuned at the component level.

Component Parameter Range Tuned Deadline
Camera (VIO) Frame rate = 15 – 100 Hz 15 Hz 66.7 ms

Resolution = VGA – 2K VGA –
Exposure = 0.2 – 20 ms 1 ms –

IMU (Integrator) Frame rate =≤800 Hz 500 Hz 2 ms
Display (Visual pipeline, Frame rate = 30 – 144 Hz 120 8.33 ms
Application) Resolution =≤2K 2K –

Field-of-view =≤ 180 90 –
Audio (Encoding, Frame rate = 48 – 96 Hz 48 Hz 20.8 ms
Playback) Block size = 256 – 2048 1024 –

ILLIXR can display the (corrected and reprojected) images on both
a desktop LCD monitor and a North Star AR headset [44] connected to
the above hardware platforms. In this paper, we use a desktop monitor
due to its ability to provide multiple resolution levels and refresh rates for
experimentation. Although this means that the user does not see the display
while walking with the camera, we practiced a trajectory that provides a
reasonable response to the displayed images and used that (live) trajectory
to collect results. Finally, for the audio pipeline, we use pre-recorded input.
We run our experiments for approximately 30 seconds.

B. Integrated ILLIXR System Configuration

The end-to-end integrated ILLIXR configuration in our experiments uses
the components as described in Table II except for scene reconstruction, eye
tracking, and hologram. The OpenXR standard currently does not support
an interface for an application to use the results of scene reconstruction
and only recently added an interface for eye tracking. We, therefore, do not
have any applications available to use these components in an integrated
setting. Although we can generate holograms, we do not yet have a
holographic display (§II-A). We do report results in standalone mode for
these components using off-the-shelf component-specific datasets.

Configuring an XR system requires tuning multiple parameters of the
different components to provide the best end-to-end user experience on the
deployed hardware. This is a complex process involving the simultaneous
optimization of many QoE metrics and system parameters. Currently tuning
such parameters is a manual, mostly ad hoc process. Table III summarizes
the key parameters for ILLIXR that required system-level tuning, the range
available in our system for these parameters, and the final value we chose
at the end of our manual tuning. We made initial guesses based on our
intuition, and then chose final values based on both our perception of the
smoothness of the system and profiling results. We expect the availability
of ILLIXR will enable new research in more systematic techniques for
performing such end-to-end system optimization.

C. Applications

To evaluate ILLIXR, we used four different XR applications:
Sponza [62], Materials [63], Platformer [64], and a custom AR demo
application with sparse graphics.

Sponza places the user inside the atrium of the famous Sponza Palace
in Dubrovnik, Croatia. The objective of the application is to showcase
rendering of high polygon count meshes and global illumination. Materials
presents the user with several sphere like objects that are composed of
different complex materials, and showcases a variety of physically based
rendering (PBR) techniques, such as displacement mapping, subsurface
scattering, and anisotropic reflections. Platformer contains a maze with
crab-like “enemies” that the user can shoot, and focuses on demonstrating
physics and collisions. The AR application contains a single light source, a
few virtual objects, and an animated ball, and showcases the overlaying of
both stationary and moving virtual objects on the physical world. We had
to develop our own AR application because existing applications in the XR
ecosystem all predominantly target VR (outside of Microsoft HoloLens).

The applications were chosen for diversity of rendering complexity, with
Sponza being the most graphics-intensive and AR demo being the least.
We did not evaluate an MR application as OpenXR does not yet contain
a scene reconstruction interface.

Since Unity and Unreal did not have OpenXR support on Linux when
this work was done, all four applications use the Godot game engine [65],
a popular open-source alternative with Linux OpenXR support.

D. Experiments with Standalone Components

For more detailed insight into the individual components of ILLIXR, we
also ran each component by itself on our desktop and embedded platforms
using off-the-shelf standalone datasets: Vicon Room 1 Medium [66] for
VIO, dyson_lab [37] for scene reconstruction, OpenEDS [67] for eye
tracking, 2560×1440 pixel frames from VR Museum of Fine Art [68]
for reprojection and hologram, and 48 KHz audio clips [69], [70] from
Freesound [71] for audio encoding and playback.

E. Metrics

Execution time: We used NSight Systems [72] to obtain the overall execu-
tion timeline of the components and ILLIXR, including serial CPU, parallel
CPU, GPU compute, and GPU graphics phases. VTune [73] (desktop only)
and perf [74] provided CPU hotspot analysis and hardware performance
counter information. NSight Compute [75] and Graphics [76] provided
detailed information on CUDA kernels and GLSL shaders respectively. We
also developed a logging framework that allows ILLIXR to easily collect
the wall clock time and CPU time of each of its components with negligible
overhead. We determined the contribution of a given component towards the
CPU time by computing the total CPU cycles consumed by that component
as a fraction of the cycles used by all components.
Power and energy: For the desktop, we measured CPU power using
perf and GPU power using nvidia-smi [77] (a standard method to
measure power on NVIDIA GPUs [78]–[80]). On the embedded platform,
we collected power and energy using a custom profiler, similar to [81],
that monitored different power rails present on the board [82] to calculate
both the average power and average energy for different components of
the system: CPU, GPU, DDR, SoC (on-chip microcontrollers; excludes
CPU and GPU power), and Sys (display, storage, I/O) [83].
Motion-to-photon latency (MTP): We compute motion-to-photon latency
as the age of the reprojected image’s pose when the frame is submitted
for display. This latency is the sum of how old the IMU sample used for
pose calculation was,6 the time taken by reprojection itself, and the wait
time until the frame buffer is accepted for display. Mathematically, this
can be formulated as: latency=timu_age+treprojection+tswap. We do
not include tdisplay, the time taken to display the frame on screen, in this
calculation. This calculation is performed and logged by the reprojection
component every time it runs. If reprojection misses vsync, the additional
latency is captured in tswap.
Image Quality: To compute image quality, we compare the outputs of the
actual XR system being studied to those of an idealized configuration that
directly receives ground truth poses from a data set (we use Vicon Room
1 Medium [66]). A key implementation challenge was that collecting the
post-reprojection images from the GPU for comparison incurs too much
overhead and perturbs the run. This is mitigated by collecting images
produced by the application renderer (which are cheaper to collect) and the
poses generated (ground truth for the idealized system), and then applying
reprojection offline (using the above poses) to get the final image that would
have been displayed. We compare the reprojected images of the actual and
idealized systems to compute both SSIM and FLIP. We report 1-FLIP to be
consistent with SSIM (0 being no similarity and 1 being identical images).

6This does not account for pose prediction as is common practice. Pose prediction
potentially reduces MTP but it is hard to account for mispredictions.

Camera VIO
Perception (Camera)
0

3

6

9

12

15
Ra

te
 (H

z)

Sponza
Materials
Platformer
AR Demo

IMU Integrator
Perception (IMU)

0

100

200

300

400

500

App Reprojection
Visual

0
15
30
45
60
75
90

105
120

Playback Encoding
Audio

0
6

12
18
24
30
36
42
48

(a) Desktop

Camera VIO
Perception (Camera)
0

3

6

9

12

15

Ra
te

 (H
z)

IMU Integrator
Perception (IMU)

0

100

200

300

400

500

App Reprojection
Visual

0
15
30
45
60
75
90

105
120

Playback Encoding
Audio

0
6

12
18
24
30
36
42
48

(b) Jetson-HP

Camera VIO
Perception (Camera)
0

3

6

9

12

15

Ra
te

 (H
z)

IMU Integrator
Perception (IMU)

0

100

200

300

400

500

App Reprojection
Visual

0
15
30
45
60
75
90

105
120

Playback Encoding
Audio

0
6

12
18
24
30
36
42
48

(c) Jetson-LP

Fig. 3: Average frame rate for each component in the different pipelines on
each application and hardware platform. The y-axis is capped at the target
frame rate of the pipeline.

IV. RESULTS

We present a comprehensive characterization of the integrated ILLIXR
system (§IV-A) and its components in isolation (§IV-B). These results con-
stitute the first detailed characterization of an entire XR system for architec-
ture and systems researchers. §V describes the implications of these results.

A. Integrated ILLIXR System

Sections IV-A1–IV-A3 present performance, power, and QoE for the
integrated ILLIXR system, all of which contribute to the goodness of the
user’s XR experience.

1) Performance: We present ILLIXR system performance in terms
of achieved frame rate for each component, and compare it against the
target frame rate (Table III). Further, to understand the importance of each
component to execution resources, we present the contribution of each
component to the total CPU execution cycles.

Component frame rates. Figures 3(a)-(c) show each component’s
average frame rate for each application, for a given hardware configuration.
Components with the same target frame rate are presented in the same
graph (the maximum value on the y-axis is the target). Thus, we show
separate graphs for components in the perception, visual, and audio
pipelines, with the perception pipeline further divided into two graphs
representing the camera and IMU driven components.

Focusing on the desktop, Figure 3a shows that virtually all components
meet, or almost meet, their target frame rates (the application component
for Sponza and Materials are the only exceptions). The IMU components
are slightly lower than the target frame rate only because of scheduling
non-determinism at their required 2 ms period. This high performance,
however, comes with a significant power cost.

Moving to the lower power Jetson, we find more components missing
their target frame rates. With Jetson-LP, only the audio pipeline is able to

meet its target. The visual pipeline components are both severely degraded
in all cases for Jetson-LP and most cases for Jetson-HP.

Although we assume modern display resolutions and refresh rates, future
systems will support larger and faster displays with larger field-of-view
and will integrate more components, further stressing the entire system.

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

Ti
m

e
(m

s)

VIO App

0.0
0.5
1.0
1.5
2.0

Ti
m

e
(m

s)

Camera
IMU

Integrator
Reprojection

Playback
Encoding

Fig. 4: Per-frame execution times for Platformer on the desktop. The top
graph shows VIO and the application. The bottom graph shows the remaining
components. Note the different scales of the y-axes.

Execution time per frame. While achieved frame rate cannot exceed
the target frame rate because it is controlled by the runtime, execution time
per frame can be arbitrarily low or high. The mean execution times follow
trends similar to those for frame rates; however, the standard deviations
for execution time are surprisingly significant in many cases (we omit
graphs for space). As a result, although the mean frame rate for some
components is comfortably within the target deadline, several frames do
miss their deadlines; e.g., VIO on Jetson-LP. Whether this affects the user’s
QoE depends on how well the rest of the system compensates for these
missed deadlines. For example, even if the VIO runs a little behind the
camera, the IMU part of the perception pipeline may be able to compensate.
Similarly, if the application misses some deadlines, reprojection may be
able to compensate. §IV-A3 provides results for system-level QoE metrics
that address these questions.

For a more detailed view, Figure 4 shows the execution time of each
frame of each ILLIXR component for Platformer on the desktop (other
timelines are omitted for space). The components are split across two
graphs for clarity. We expect variability in VIO (blue) and application
(yellow) since these computations are known to be input-dependent.
However, we see significant variability in the other components as
well. This variability is due to scheduling and resource contention, and
contributes to the high standard deviation of execution time.

 S M P AR
Desktop

 S M P AR
Jetson HP

 S M P AR
Jetson LP

0%
20%
40%
60%
80%

100% Encoding
Playback
Reprojection
Application
Integrator
IMU
VIO
Camera

Fig. 5: Contributions of ILLIXR components to CPU time for different applica-
tions and hardware. S = Sponza, M = Materials, P = Platformer, AR = AR Demo.

Distribution of cycles. Figure 5 shows the relative attribution of the
total cycles consumed in the CPU to the different ILLIXR components
for the different applications and hardware platforms. Focusing first on
the desktop, Figure 5 shows that VIO and the application are the largest

contributors to CPU cycles, with one or the other dominating, depending
on the application. Reprojection and audio playback follow next, becoming
larger relative contributors as the application complexity reduces. Although
reprojection never exceeds 10% of the total cycles, it is a dominant
contributor to motion-to-photon latency and, as discussed below, cannot
be neglected for optimization.

Jetson-HP and Jetson-LP show similar trends except that we find that
the application’s and reprojection’s relative contribution decreases while
other components such as the IMU integrator become more significant
relative to the desktop. This phenomenon occurs because with the more
resource-contrained Jetson configurations, the application and reprojection
often miss their deadline and are forced to skip the next frame. Thus, the
overall work performed by these components reduces, but shows up as
poorer end-to-end QoE metrics discussed later (§IV-A3).

S M P AR
Desktop

S M P AR
Jetson HP

S M P AR
Jetson LP

100

101

102

103

Po
we

r (
W

at
ts

)

Sponza
Materials
Platformer
AR Demo

(a) Total Power (W) (b) Power Breakdown

Fig. 6: (a) Total power (note log scale) and (b) relative contribution to power by
different hardware units for ILLIXR running each application on each hardware
platform. S = Sponza, M = Materials, P = Platformer, AR = AR Demo.

2) Power: Total Power. Figure 6a shows the total power consumed by
ILLIXR running each application on each hardware platform. The power
gap from the ideal (Table I) is severe on all three platforms. Jetson-LP, the
lowest power platform, is about two orders of magnitude off in terms of
the ideal power while the desktop is off by three. As with performance,
larger resolutions, frame rates, and field-of-views, and more components
would further widen this gap.

Contribution to power from different hardware components.
Figure 6b shows the relative contribution of different hardware units to
the total power, broken down as CPU, GPU, DDR (DRAM), SoC, and Sys
(§III-E). Although the GPU dominates power on the desktop, all the above
hardware units contribute substantially on the Jetson. SoC and Sys power
are often ignored, but they consume more than 50% of total power on
Jetson-LP. These results highlight the need for studying all aspects of the
system – reducing the power gap for XR requires optimizing system-level
hardware components as well.

0
5

10
15
20
25
30

Ti
m

e
(m

s)

Jetson LP Jetson HP Desktop

Fig. 7: Motion-to-photon latency per frame of Platformer.

3) Quality of Experience: Quality of an XR experience is often
determined through user studies [84]–[86]; however, these can be expensive,
time consuming, and subjective. ILLIXR, therefore, provides several
quantitative metrics to measure QoE. We report both results of visual
examination and quantitative metrics below.

Visual examination. A detailed user study is outside the scope of this
work, but there were several artifacts in the displayed image that were
clearly visible. As indicated by the performance metrics, the desktop

TABLE IV: Motion-to-photon latency in milliseconds (mean±std dev), without
tdisplay (a few ms). Target MTP is 20 ms for VR and 5 ms for AR (Table I).

Platform Sponza Materials Platformer AR Demo
Desktop 3.1±1.1 3.1±1.0 3.0±0.9 3.0±0.9

Jetson-HP 13.5±10.7 7.7±2.7 6.0±1.9 5.6±1.4
Jetson-LP 19.3±14.5 16.4±4.9 11.3±4.7 12.0±3.4

TABLE V: Image quality metrics (mean±std dev) for Sponza.
Desktop Jetson-HP Jetson-LP

SSIM 0.83±0.04 0.80±0.05 0.68±0.09
1-FLIP 0.86±0.05 0.85±0.05 0.65±0.17

displayed smooth images for all four applications. Jetson-HP showed
perceptibly increased judder for Sponza. Jetson-LP showed dramatic pose
drift and clearly unacceptable images for Sponza and Materials, though
it was somewhat acceptable for the less intense Platformer and AR Demo.
As discussed in §IV-A1, the average VIO frame rate for Jetson-LP stayed
high, but the variability in the per-frame execution time resulted in many
missed deadlines, which could not be fully compensated by the IMU or
reprojection. These effects are quantified with the metrics below.

Motion-to-photon latency. Table IV shows the mean and standard
deviation of MTP for all cases. Figure 7 shows MTP for each frame over
the execution of Platformer on all hardware (we omit the other applications
for space).

Table IV and our detailed per-frame data shows that the desktop can
achieve the target VR MTP of 20ms (Table I) for virtually all frames.
Jetson-HP is able to make the target VR MTP for the average frame for all
applications and for most frames for all except Sponza (even after adding
tdisplay). Jetson-LP shows a significant MTP degradation – on average, it
still meets the target VR MTP, but both the mean and variability increase
with increasing complexity of the application until Sponza is practically
unusable. For AR, most cases appear to meet the target (5ms) on the desktop,
but adding tdisplay significantly exceeds the target. Both Jetsons cannot
make the target AR MTP for an average frame. Thus, the MTP data col-
lected by ILLIXR is consistent with the visual observations reported above.

Offline metrics for image quality. Table V shows the mean and
standard deviation for SSIM and 1-FLIP for Sponza on all hardware
configurations. (We omit other applications for space.) Recall that these
metrics require offline analysis and use a different offline trajectory
dataset for VIO (that comes with ground truth) from the live camera
trajectory reported in the rest of this section (§III-E). Nevertheless, the
visual experience of the applications is similar. We find that the metrics
degrade as the hardware platform becomes more constrained, although the
SSIM and FLIP values seem deceptively high for the Jetsons (specifically
the Jetson-LP where VIO shows a dramatic drift). Quantifying image
quality for XR is known to be challenging [87], [88]. While some work has
proposed the use of more conventional graphics-inspired metrics such as
SSIM and FLIP, this is still a topic of ongoing research [89], [90]. ILLIXR
is able to capture the proposed metrics, but our work also motivates and
enables research on better image quality metrics for XR experiences.

B. Analyzing Components in Isolation

We next examine ILLIXR components in isolation. Tables VI and VII
summarize the algorithmic tasks within each component, including the key
computation and memory patterns, as well as the time spent in each task,
analyzed on the high-end desktop platform. We do not show the sensor
related ILLIXR components since they are quite simple, and we do not
present a table for eye tracking as neural networks are well understood
in the architecture community. We define tasks as distinct high level
algorithmic steps. Figure 8 shows the CPU IPC (Instructions-Per-Cycle)
and cycle breakdown for each component in aggregate. We do not provide
a similar breakdown on the GPU as GPU profiling tools do not provide one.

TABLE VI: Task breakdown of VIO and scene reconstruction.

Task Time Computation Memory Pattern

VIO

Feature detection
Detects
new features in the
new camera images

15% KLT; FAST Globally
mixed dense and sparse
image accesses; locally
dense image stencil

Feature matching
Matches features
across images

13% KLT;
GEMM; linear algebra

Globally
mixed dense and sparse
image accesses; locally
dense image stencil;
mixed dense and random
feature map accesses

Feature
initialization
Adds
new features to state

14% SVD; Gauss-Newton;
Jacobian; nullspace
projection; GEMM

Dense
feature map accesses;
mixed dense and sparse
state matrix accesses

MSCKF update
Updates state using
MSCKF algorithm

23% SVD; Gauss-Newton;
Cholesky; QR; Jacobian;
nullspace projection;
chi2 check; GEMM

Dense
feature map accesses;
mixed dense and sparse
state matrix accesses

SLAM update
Updates state
using EKF-SLAM
algorithm

20% Identical
to MSCKF update

Similar, but not identical,
to MSCKF update

Marginalization
Removes
features from state

5% Cholesky;
matrix arithmetic

Dense feature map
and state matrix accesses

Other
Miscellaneous tasks

10% Gaussian filter; histogram Globally
dense image stencil

Scene Reconstruction

Camera Processing
Processes incoming
camera depth image

5% Bilateral filter;
invalid depth rejection

Locally
dense image stencil

Image Processing
Pre-processes RGB-
D image for tracking
and mapping

18% Generation
of vertex map, normal
map, and image intensity;
image undistortion; pose
transformation of old map

Globally dense image
accesses; locally dense
image stencil; layout
change from RGB_RGB
→ RR_GG_BB

Pose Estimation
Estimates
6DOF pose

28% Iterative closest
point; photometric error;
geometric error; reduction

Globally
mixed dense and sparse
image accesses; locally
dense image accesses

Surfel Prediction
Calculates active sur-
fels in current frame

34% Gauss-Newton;
Cholesky; Jacobian;
image sampling; fern
encoding and matching;
matrix transformations

Globally dense
accesses to deformation
graph; globally
sparse image accesses;
fern database lookup

Map Fusion
Updates
map with new
surfel information

15% Binary search;
nearest neighbor search;
matrix transformations

Globally sparse
accesses to deformation
graph; locally dense
accesses to surfel list

1) Common Observations: Task Dominance No component is com-
posed of just one task. The most homogeneous is audio encoding where
ambisonic encoding is 81% of the total – but accelerating just that would
limit the overall speedup to 5.3× by Amdahl’s law, which may not be
sufficient given the power and performance gap shown in §IV-A. VIO is
the most diverse, with seven major tasks and many more sub-tasks.

Task Diversity As shown in the component tables, there is a remarkable
diversity of algorithmic tasks. These tasks are differently amenable
for execution on the CPU (e.g., audio playback), GPU-compute (e.g.,
hologram), or GPU-graphics (e.g., reprojection). The compute patterns
span stencils (KLT), GEMM, Gauss-Newton, and FFT, among others,
and are often shared by components (e.g., Cholesky in VIO and scene
reconstruction). The memory patterns are equally diverse, spanning dense
and sparse, local and global, and row-major and column-major accesses
to various types of data structures. Moreover, the working set sizes of

TABLE VII: Task breakdown of visual and audio pipeline components.

Task Time Computation Memory Pattern

Reprojection

FBO
FBO
state management

24% Framebuffer bind and clear Driver calls; CPU-GPU
synchronization

OpenGL
State Update
Sets
up OpenGL state

54% OpenGL state updates;
one drawcall per eye

Driver calls; CPU-GPU
synchronization

Reprojection
Applies reprojection
transformation
to image

22% 6 matrix-vector
MULs/vertex

Dense
accesses to uniform,
vertex, and fragment
buffers; 3 sparse texture
accesses/fragment

Hologram

Hologram-to-depth
Propagates pixel
phase to depth plane

57% Transcendentals;
FMADDs; tree reduction

Globally dense accesses
to hologram phases

Sum Sums phase
differences from
hologram-to-depth

<
0.1%

Tree reduction Globally dense
accesses to partial sums

Depth-to-hologram
Propagates depth
plane phase to pixel

43% Transcendentals;
FMADDs;
thread-local reduction

Globally dense
accesses to depth phases

Audio Encoding

Normalization
INT16 to FP32

7% Element-wise
FP32 division

Globally dense accesses
to audio samples

Encoding
Sample to
soundfield mapping

81% Y [j][i]=D×X[j] Globally
dense column-major
accesses to soundfield

Summation
HOA soundfield
summation

12% Y [i][j]+=Xk[i][j] ∀k Globally
dense row-major
accesses to soundfield

Audio Playback

Psychoacoustic
filter
Applies
optimization filter

29% FFT; frequency
domain convolution; IFFT

Butterfly
pattern; Globally dense
accesses to FFT output

Rotation
Rotates soundfield
using pose

6% Transcendentals;
FMADDs

Globally dense
accesses to soundfield

Zoom
Zooms soundfield
using pose

5% FMADDs Globally
dense column-major
accesses to soundfield

Binauralization
Applies HRTFs

60% Identical
to psychoacoustic filter

Identical
to psychoacoustic filter

the components range from tens of KB to hundreds of MB, which can
change the characteristics of a given memory pattern. Salient examples
include locally dense stencils becoming memory bandwidth bound when
the working set size is large, and globally sparse accesses not becoming
memory bound when the working set size is small relative to the on-chip
storage capacity.

Microarchitectural Diversity Figure 8 shows significant microarchitec-
tural diversity in addition to the algorithmic diversity discussed above. The
IPC ranges from 0.3 (reprojection) to 3.5 (audio playback), with a variety
of bottlenecks on the frontend and backend of the CPU pipeline.

Input-Dependence Although we saw significant per-frame execution
time variability in all components in the integrated system, the only
components that exhibit such variability standalone are VIO and scene
reconstruction. VIO shows a range of execution time throughout its
execution, with a coefficient of variation from 17% to 26% across the

VIO Eye
Tracking

Scene
Reconst.

Reproj. Hologram Audio
Encoding

Audio
Playback

0%
20%
40%
60%
80%

100%
Cy

cle
 B

re
ak

do
wn

 (%
)

Retiring Bad Speculation Frontend Bound Backend Bound IPC

0
1
2
3
4

IP
C

Fig. 8: Cycle breakdown and IPC of ILLIXR components.

studied datasets [66]. Scene reconstruction’s execution time keeps steadily
increasing due to the increasing size of its map. Loop closure attempts result
in execution time spikes of 100’s of ms, an order of magnitude more than
its average per-frame execution time. We omit detailed graphs due to space.

2) Architectural Deep Dive of Components: We performed a detailed mi-
croarchitectural characterization of each component task (detailed data omit-
ted for space). Below we highlight salient characteristics of each component.

VIO is a complex CPU workload with wide microarchitectural task diver-
sity. The average IPC is 2.2, but there are several computationally intensive
tasks with good vectorization that present higher average IPC; e.g., KLT and
GEMM have an IPC of 3.2+. On the memory side, the working set size of
most tasks is several hundred KBs, which is larger than the L1 and L2, but is
small enough to fit in the LLC – the LLC shows only 0.1 MPKI (misses per
kilo-instruction) while the L2 shows 7.9 MPKI. Our results include the ef-
fect of demand prefetchers in the CPU, which are quite effective – although
the L2 shows 7.9 MPKI overall, it shows 0.6 MPKI for demand loads.

Eye tracking is a typical deep neural network that spends 74% of its
total time executing convolution operations and activation functions, 19%
performing batch copies, and the remaining 7% in miscellaneous tasks.
Notably, the weights only occupy 0.98 MB but a total of 1922 MB is
accessed during a forward pass, still making it memory bandwidth bound.
However, the batch size is only two (one image per eye), resulting in low
overall utilization of the GPU.

Scene reconstruction is a hybrid CPU-GPU workload that spends most
of its time on GPU tasks. It is a memory bandwidth bound workload with
many tasks consuming 200 GB/s of memory bandwidth and a few even
surpassing 400 GB/s due to the large number of accesses per pixel (depth,
normal, vertex, etc.). There is significant variation in data reuse, with some
kernels possessing no reuse because of streaming accesses and some kernels
possessing excellent reuse due to stencil operations. Moreover, conversions
between CUDA (RR_GG_BB) and OpenGL (RGB_RGB) data layouts are
common, as the tasks are split between GPU compute and GPU graphics.
Reductions are a commonly found compute primitive in many tasks.

Reprojection is a hybrid CPU-GPU workload that spends a significant
amount of time setting up framebuffer and OpenGL state prior to execution
of the reprojection shaders. Framebuffer and OpenGL state updates are
both performed via the GPU driver. Consequently, reprojection only has
an IPC of 0.3, with most of the CPU cycles spent in frontend stalls due
to the large instruction footprint of the GPU driver. The shaders themselves
have very little compute and are memory bandwidth bound due to the size
of the framebuffer. Moreover, the irregular texture cache accesses due to
chromatic aberration correction result in a cache hit rate of 75%, which
is low compared to the 90% achieved by non-correcting shaders.

Hologram executes all its tasks on the GPU as CUDA kernels, all
of which are compute-bound. Almost all the executed instructions are
FP fused multiply-add (FFMA), integer multiply-add (IMAD), and FP
add (FADD). There is significant utilization of the FP64 hardware pipe
– 75% in hologram-to-depth – as the transcendental calculations necessitate
high precision. Memory traffic is limited to accessing each pixel’s phase
value only once in each task (reads in hologram-to-depth and writes in
depth-to-hologram); however, this is significant data given the size of the
framebuffer, and consumes 75-140 GB/s of memory bandwidth. The depth

plane’s phase values are accessed more often, but are only few tens of bytes
in size, and are stored in the scratchpad for reuse.

Audio encoding is a compute-bound workload that is able to leverage
vectorization and dense data structure accesses to achieve an IPC of
2.5, with 69% of cycles being spent retiring instructions. However, the
component’s IPC is limited due to backend stalls caused by division and
modulo operations being bottlenecked by the lone hardware divider.

Audio playback is also a compute-bound workload, but has no division
operations, resulting in even higher IPC and hardware utilization. The FFT
and FMADD compute is vectorized, and the densely accessed 64 KB HOA
soundfield comfortably fits in the L2 cache of the CPU, resulting in an
average load latency of 7 cycles. Consequently, 86% of the cycles are spent
retiring instructions, and a fairly high IPC of 3.5 is achieved.

V. IMPLICATIONS FOR ARCHITECTURE AND SYSTEMS RESEARCH

Architects have embraced specialization but most research focuses on
accelerators for single programs. ILLIXR is motivated by research for
specializing an entire domain-specific system, specifically edge systems
with constrained resources, high computation demands, and goodness
metrics based on end-to-end domain-specific quality of output; e.g., AR
glasses, robots/drones, autonomous vehicles, etc. Our results characterize
end-to-end performance, power, and QoE of an XR device, exposing new
systems research opportunities and demonstrating ILLIXR as a unique
testbed to enable exploration of these domain-specific systems, as follows.

A. Performance, Power, and QoE Gaps

Our results in §IV-A quantitatively show that collectively there is a
several orders of magnitude performance, power, and QoE gap between
current representative desktop and embedded class systems and the goals
in Table I. The gap will be further exacerbated with higher fidelity displays
and more components for a more feature-rich XR experience (e.g., scene
reconstruction, eye tracking, hand tracking, and holography).

While the presence of these gaps itself is not a surprise, we provide the
first such quantification and analysis. This provides insights for directions
for architecture and systems research (below) as well as demonstrates
ILLIXR as a one-of-a-kind testbed that can enable such research.

B. Component and Task Diversity

Our more detailed results in §IV-A1 and §IV-B show that no one
component dominates all the metrics of interest. Thus, to close the
aforementioned gaps, all components have to be considered together, even
those that may appear relatively inexpensive at first glance. Moreover,
there is a diversity of tasks within and across components, and no single
task dominates. It is likely impractical to build a unique accelerator for
every task given the large number of tasks and the severe power and
area constraints for XR devices: leakage power will be additive across
accelerators, and interfaces between these accelerators and other peripheral
logic will further add to this power and area (we identified 27 tasks across
all components, and expect more tasks with new components).

At the same time, our results show that a number of common primitives
exist across components; e.g., Cholesky in VIO and scene reconstruction,
making the case for shared hardware across components. While determining
whether components share compute or memory primitives is possible by
analyzing the components in isolation, whether we should instantiate only
one Cholesky block or whether we should duplicate or pipeline it to meet
the requirements of both components can only be answered by taking
run-time interactions into account, which ILLIXR enables.

The choice of shared hardware not only impacts architecture (and the
software stack such as compilation and scheduling), but also microarchitec-
ture. Analyzing VIO in isolation, the communication between GEMM and
Cholesky as part of the chi2 check can be hardcoded to improve efficiency.

In a full system, the shared nature of Cholesky motivates a different microar-
chitecture with support for efficient communication with multiple producers
and consumers instead of just GEMM. The above observations motivate
new design space exploration tools research for system-wide codesign.

C. Full-system Power Contributions

§IV-A2 shows that addressing the power gap requires considering
system-level hardware components, such as display and other I/O, including
numerous sensors. While we do not measure individual sensor power,
it is included in the Sys power on the Jetson. This motivates research in
unconventional architecture paradigms such as on-sensor computing to
save I/O power; e.g., the image processing tasks of VIO can be moved
to the sensor so that only detected features and not entire camera frames
are sent from the camera to the SoC. To reduce sensor power, sensor
parameters can be tuned; e.g., reducing camera exposure can save power
at the cost of a darker image. However, sensors are typically shared among
components [91], and thus decisions regarding which tasks to move
on-sensor and how to dynamically alter exposure must consider the entire
system and not just one component. ILLIXR enables this.

D. Variability

Our results in §IV-A1 show large variability in per-frame processing
times in many cases, either due to inherent input-dependent nature of
the component (e.g., VIO) or due to resource contention from other
components. This variability poses challenges to, and motivates research
directions in, scheduling and resource partitioning and allocation of
shared hardware resources. As discussed in §IV-B2, the components
exhibit a variety of memory access patterns, which further complicates the
design of shared resources. For instance, scene reconstruction is memory
bandwidth bound, which motivates a processing-in-memory based design
for it when considered in isolation. However, PIM-based designs steal
memory bandwidth away from external memory accesses performed by
other components in the system, which still need to be serviced to meet
end-to-end QoE constraints. Thus, the design of a particular component
is influenced by the rest of the system, which ILLIXR allows us to study.

E. End-to-end Quality Metrics

The end-to-end nature of ILLIXR allows it to provide end-to-end quality
metrics such as MTP and see the impact of optimizations on the final dis-
played images. §IV-A3 shows that per-component metrics (e.g., VIO frame
rate) are insufficient to determine the impact on the final user experience. At
the same time, there is a continuum of acceptable experiences. Techniques
such as approximate computing take advantage of such applications but
often focus on subsystems that make it hard to assess end user impact. For
example, VIO provides several parameters such as number of tracked points,
SLAM features, etc. that can be tuned to trade off accuracy and performance.
We experimented with two sets of parameters of VIO, and found that the
average trajectory error could be reduced from 8.1 cm to 4.9 cm at the
cost of a 1.5× increase in average per-frame execution time. Looking at
pose error by itself (a subsystem metric [33]), it was unclear whether the
performance cost justified the extra accuracy. However, when we ran the
full system, we found that the lower accuracy setting was sufficient for
good tracking, preventing us from allocating unnecessary resources for VIO.
Similarly, at a system level, there are a multitude of parameters that need
to be tuned for optimal performance of the system (Table III). Our results
from §IV-A3 also motivate work on defining more perceptive quantitative
metrics for image quality, which can be developed using ILLIXR.

F. Other Implications

ILLIXR also enables research in designing common compiler
intermediate representations (IRs) to enable code generation for a variety

of accelerators; device–edge server–cloud server work partitioning; content
streaming and multiparty XR; and security and privacy.

G. Evaluation Tools

Architects use a variety of tools to evaluate their research. Design
for future domain-specific systems is no different and ILLIXR lays the
foundation for other tools as well. ILLIXR can be immediately used for
architecture research described above using existing HLS tools to map
components/SoC designs to RTL, FPGAs, and ASICs. Given the era
of specialization, architecture researchers are increasingly using such
methods. We can also use ILLIXR with simulation. We describe three ideas
below, and expect that further research into this topic will yield even more
solutions. 1) As with other benchmarks, we can scale down ILLIXR inputs
and run on simulators such as gem5 [92], with the graphics components on
GLTraceSim [93]. 2) We can collect input/output traces of each component
via the ILLIXR runtime on a real machine, and organize them like a
rosbag [94] to drive simulations of components of interest. 3) We can run
all ILLIXR components on a common dilated clock – the runtime slows
down components running on real hardware to match the real-time speed of
simulated components. This models a hybrid real+simulated system. While
building such simulators is possible, it is outside the scope of our paper.

VI. RELATED WORK

There is an increasing interest in XR in the architecture community and
several works have shown promising specialization results for individual
XR components: Processing-in-Memory architectures for graphics [95],
[96], video accelerators for VR [81], [97]–[100], 3D point cloud accel-
eration [101], [102], stereo acceleration [103], [104], computer vision
accelerators [105], [106], specialized sensors [107], scene reconstruction
hardware [108], and SLAM chips [109]–[111]. However, these works have
been for single components in isolation or for a subset of the entire XR sys-
tem. Significant work has also been done on remote rendering [49], [112]–
[117] and 360 video streaming [118]–[121]. While these works do consider
full end-to-end systems, they only focus on the rendering aspect of the
system and do not consider the interplay between the various components of
the system. Our work instead provides a full-system-benchmark, consisting
of a set of XR components representing a full XR workflow, along with
insights into their characteristics. Our goal is to propel architecture and
systems research in the direction of full domain-specific system design.

There have been other works that have developed benchmark suites
for XR. Raytrace in SPLASH-2 [11], VRMark [122], FCAT [123], and
Unigine [124] are examples of graphics rendering benchmarks, but do
not contain the perception pipeline nor adaptive display components. The
SLAMBench [125]–[127] series of benchmarks aid the characterization
and analysis of available SLAM algorithms, but contain neither the visual
pipeline nor the audio pipeline. Unlike our work, none of these benchmarks
suites look at multiple components of the XR pipeline and instead just
focus on one aspect.

Project Esky [128] is a partially open-source XR runtime for Project
North Star [44]. It uses closed head tracking software from Intel T26x
cameras [129] and its communication and runtime framework has
limited modularity – it supports a pre-defined set of plugins and does not
expose interfaces to enable easy plug-n-play for new components and
implementations. It also does not support OpenXR, the growing open XR
application standard. Chen et al. [130] characterized AR applications on
a commodity smartphone, but neither analyzed individual components nor
considered futuristic components due to the closed-source nature of the
platform. Yi et al. [131] performed scheduling of parallel inference and
rendering tasks in smartphone-based AR applications, but did not consider
other XR system components due to their closed-source nature.

VII. CONCLUSION

This paper develops ILLIXR, the first open source full system XR testbed
for driving future end-to-end QoE-driven, co-designed architecture, systems,
and algorithm research. ILLIXR-enabled analysis shows several interesting
implications for system design – demanding performance, power, and qual-
ity requirements; a large diversity of critical tasks; significant computation
variability that challenges scheduling and specialization; and a diversity in
bottlenecks throughout the system, from I/O and compute requirements to
power and resource contention. ILLIXR and our analysis have the potential
to propel many new directions in architecture, systems, and algorithms
research. Although ILLIXR already incorporates a representative workflow,
research is already exposing new frontiers, such as the integration of ML
and low-latency client-cloud applications. Through the ILLIXR consortium,
we envision ILLIXR will become a community resource that continues to
evolve, providing an increasingly comprehensive resource to solve the most
difficult challenges of QoE-driven domain-specific system design.

VIII. ACKNOWLEDGMENTS

We developed ILLIXR with many consultations with researchers and
practitioners in many domains: audio, graphics, optics, robotics, signal
processing, vision, and XR systems. We are deeply grateful for all of
these discussions and specifically to the following: Ameen Akel, Wei Cui,
Aleksandra Faust, Liang Gao, Rod Hooker, Matt Horsnell, Amit Jindal,
Steve LaValle, Steve Lovegrove, David Luebke, Andrew Maimone, Vegard
Øye, Maurizio Paganini, Martin Persson, Archontis Politis, Eric Shaffer,
and Paris Smaragdis. The development of ILLIXR was supported by the
Applications Driving Architectures (ADA) Research Center, a JUMP Center
co-sponsored by SRC and DARPA, the Center for Future Architectures
Research (C-FAR), one of the six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and DARPA, the
National Science Foundation under grant CCF 16-19245, and by a Google
Faculty Research Award. The development of ILLIXR was also aided by
generous hardware and software donations from Arm and NVIDIA.

REFERENCES

[1] S. Adve, R. Bodik, and L. Ceze, “I-USHER: Interfaces to Unlock
the Specialized HardwarE Revolution,” DARPA Information Science
and Technology (ISAT) study, Apr. 2019. [Online]. Available:
https://rsim.cs.illinois.edu/Talks/I-USHER.pdf

[2] S. Stoller, M. Carbin, S. V. Adve, K. Agrawal, G. Blelloch, D. Stanzione,
K. Yelick, and M. Zaharia, “Future directions for parallel and distributed
computing,” 2019, Report of an NSF workshop to influence the successor to
the Scalable Parallelism in the Extreme (SPX) program. [Online]. Available:
rsim.cs.illinois.edu/Pubs/SPX_2019_Workshop_Report.pdf

[3] M. McGuire, “Exclusive: How nvidia research is reinventing the
display pipeline for the future of vr, part 1,” 2017. [Online]. Available:
https://www.roadtovr.com/exclusive-how-nvidia-research-is-reinventing-
the-display-pipeline-for-the-future-of-vr-part-1/

[4] R. Aggarwal, T. P. Grantcharov, J. R. Eriksen, D. Blirup, V. B.
Kristiansen, P. Funch-Jensen, and A. Darzi, “An evidence-based virtual
reality training program for novice laparoscopic surgeons,” Annals of
surgery, vol. 244, no. 2, pp. 310–314, Aug 2006. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/16858196

[5] S. Krohn, J. Tromp, E. M. Quinque, J. Belger, F. Klotzsche, S. Rekers,
P. Chojecki, J. de Mooij, M. Akbal, C. McCall, A. Villringer, M. Gaebler,
C. Finke, and A. Thöne-Otto, “Multidimensional evaluation of virtual
reality paradigms in clinical neuropsychology: Application of the vr-check
framework,” J Med Internet Res, vol. 22, no. 4, p. e16724, Apr 2020. [Online].
Available: https://doi.org/10.2196/16724

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite:
Characterization and architectural implications,” in Proceedings of the 17th In-
ternational Conference on Parallel Architectures and Compilation Techniques,
ser. PACT ’08. New York, NY, USA: Association for Computing Machinery,
2008, p. 72–81. [Online]. Available: https://doi.org/10.1145/1454115.1454128

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in 2009 IEEE
Intl. Symp. on Workload Characterization (IISWC), 2009, pp. 44–54.

[8] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH Comput.
Archit. News, vol. 34, no. 4, p. 1–17, Sep. 2006. [Online]. Available:
https://doi.org/10.1145/1186736.1186737

[9] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017: Next-generation
compute benchmark,” in Companion of the 2018 ACM/SPEC International
Conference on Performance Engineering, ser. ICPE ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 41–42. [Online].
Available: https://doi.org/10.1145/3185768.3185771

[10] J. P. Singh, W.-D. Weber, and A. Gupta, “Splash: Stanford parallel applications
for shared-memory,” SIGARCH Comput. Archit. News, vol. 20, no. 1, p.
5–44, Mar. 1992. [Online]. Available: https://doi.org/10.1145/130823.130824

[11] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2 pro-
grams: Characterization and methodological considerations,” in Proceedings
of the 22nd Annual International Symposium on Computer Architecture, ser.
ISCA ’95. New York, NY, USA: Association for Computing Machinery,
1995, p. 24–36. [Online]. Available: https://doi.org/10.1145/223982.223990

[12] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A properly
synchronized benchmark suite for contemporary research,” in 2016 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), 2016, pp. 101–111.

[13] S. V. Adve and M. Huzaifa, “An open-source testbed to democratize
extended reality research, development, and benchmarking,” NVIDIA
GPU Technology Conference (GTC), April 2021. [Online]. Available:
https://www.youtube.com/watch?v=ZY98lWksnpM

[14] “ILLIXR Consortium,” https://illixr.org, 2021.
[15] The Khronos Group Inc., “The openxr specification,” Available at

https://www.khronos.org/registry/OpenXR/specs/1.0/html/xrspec.html
(accessed April 5, 2020), Mar. 2020, version 1.0.8.

[16] “Monado - open source XR platform.” [Online]. Available:
https://monado.dev/

[17] D. Kanter, “Graphics processing requirements for enabling immersive vr,”
Whitepaper, 2015.

[18] M. McGuire, “Exclusive: How nvidia research is reinventing the
display pipeline for the future of vr, part 2,” 2017. [Online]. Available:
https://www.roadtovr.com/exclusive-nvidia-research-reinventing-display-
pipeline-future-vr-part-2/

[19] Varjo, “Varjo VR-3,” 2020. [Online]. Available:
https://varjo.com/products/vr-3/

[20] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-latency
and ultra-reliable virtual reality,” IEEE Network, vol. 32, no. 2, pp. 78–84,
2018.

[21] D. Takahashi, “Oculus chief scientist mike abrash still sees the rosy future
through ar/vr glasses,” https://venturebeat.com/2018/09/26/oculus-chief-
scientist-mike-abrash-still-sees-the-rosy-future-through-ar-vr-glasses/,
September 2018.

[22] Microsoft, “Microsoft hololens 2,” 2019. [Online]. Available:
https://www.microsoft.com/en-us/hololens/hardware

[23] Wikipedia contributors, “Hololens 2 — Wikipedia, the free encyclopedia,”
https://en.wikipedia.org/wiki/HoloLens_2, 2019.

[24] L. Goode, “The hololens 2 puts a full-fledged computer on your face,”
https://www.wired.com/story/microsoft-hololens-2-headset/, Feb 2019.

[25] Skarredghost, “All you need to know on hololens 2,” https:
//skarredghost.com/2019/02/24/all-you-need-know-hololens-2/, May 2019.

[26] Rebecca Pool, “Ar/vr/mr 2020: The future now arriving,” 2017. [Online].
Available: http://microvision.blogspot.com/2020/02/arvrmr-2020-future-now-
arriving.html

[27] Ian Cutress, “Hot chips 31 live blogs: Microsoft hololens 2.0 silicon,”
https://www.anandtech.com/show/14775/hot-chips-31-live-blogs-
microsoft-hololens-20-silicon, 2019.

[28] R. Smith and A. Frumusanu, “The Snapdragon 845 Performance Preview:
Setting the Stage for Flagship Android 2018,” https://www.anandtech.com/
show/12420/snapdragon-845-performance-preview/4, 2018.

[29] K. Hinum, “Qualcomm Snapdragon 855 SoC - Benchmarks and Specs,”
2019. [Online]. Available: https://www.notebookcheck.net/Qualcomm-
Snapdragon-855-SoC-Benchmarks-and-Specs.375436.0.html

[30] I. Cutress, “Spotted: Qualcomm Snapdragon 8cx wafer on 7nm,”
https://www.anandtech.com/show/13687/qualcomm-snapdragon-8cx-
wafer-on-7nm, 2018.

[31] Stereolabs, “ZED Software Development Kit,” 2020. [Online]. Available:
https://www.stereolabs.com/developers/release/

[32] Intel, “Intelrealsense,” https://github.com/IntelRealSense/librealsense, 2015.
[33] “OpenVINS repository,” https://github.com/rpng/open_vins, 2019.
[34] “KimeraVIO repository,” https://github.com/MIT-SPARK/Kimera-VIO,

2017.

https://rsim.cs.illinois.edu/Talks/I-USHER.pdf
rsim.cs.illinois.edu/Pubs/SPX_2019_Workshop_Report.pdf
https://www.roadtovr.com/exclusive-how-nvidia-research-is-reinventing-the-display-pipeline-for-the-future-of-vr-part-1/
https://www.roadtovr.com/exclusive-how-nvidia-research-is-reinventing-the-display-pipeline-for-the-future-of-vr-part-1/
https://www.ncbi.nlm.nih.gov/pubmed/16858196
https://doi.org/10.2196/16724
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/130823.130824
https://doi.org/10.1145/223982.223990
https://www.youtube.com/watch?v=ZY98lWksnpM
https://illixr.org
https://www.khronos.org/registry/OpenXR/specs/1.0/html/xrspec.html
https://monado.dev/
https://www.roadtovr.com/exclusive-nvidia-research-reinventing-display-pipeline-future-vr-part-2/
https://www.roadtovr.com/exclusive-nvidia-research-reinventing-display-pipeline-future-vr-part-2/
https://varjo.com/products/vr-3/
https://venturebeat.com/2018/09/26/oculus-chief-scientist-mike-abrash-still-sees-the-rosy-future-through-ar-vr-glasses/
https://venturebeat.com/2018/09/26/oculus-chief-scientist-mike-abrash-still-sees-the-rosy-future-through-ar-vr-glasses/
https://www.microsoft.com/en-us/hololens/hardware
https://en.wikipedia.org/wiki/HoloLens_2
https://www.wired.com/story/microsoft-hololens-2-headset/
https://skarredghost.com/2019/02/24/all-you-need-know-hololens-2/
https://skarredghost.com/2019/02/24/all-you-need-know-hololens-2/
http://microvision.blogspot.com/2020/02/arvrmr-2020-future-now-arriving.html
http://microvision.blogspot.com/2020/02/arvrmr-2020-future-now-arriving.html
https://www.anandtech.com/show/14775/hot-chips-31-live-blogs-microsoft-hololens-20-silicon
https://www.anandtech.com/show/14775/hot-chips-31-live-blogs-microsoft-hololens-20-silicon
https://www.anandtech.com/show/12420/snapdragon-845-performance-preview/4
https://www.anandtech.com/show/12420/snapdragon-845-performance-preview/4
https://www.notebookcheck.net/Qualcomm-Snapdragon-855-SoC-Benchmarks-and-Specs.375436.0.html
https://www.notebookcheck.net/Qualcomm-Snapdragon-855-SoC-Benchmarks-and-Specs.375436.0.html
https://www.anandtech.com/show/13687/qualcomm-snapdragon-8cx-wafer-on-7nm
https://www.anandtech.com/show/13687/qualcomm-snapdragon-8cx-wafer-on-7nm
https://www.stereolabs.com/developers/release/
https://github.com/IntelRealSense/librealsense
https://github.com/rpng/open_vins
https://github.com/MIT-SPARK/Kimera-VIO

[35] “GTSAM repository,” 2020. [Online]. Available:
https://github.com/borglab/gtsam

[36] A. K. Chaudhary, R. Kothari, M. Acharya, S. Dangi, N. Nair, R. Bailey,
C. Kanan, G. Diaz, and J. B. Pelz, “Ritnet: Real-time semantic segmentation
of the eye for gaze tracking,” in 2019 IEEE/CVF International Conference
on Computer Vision Workshop (ICCVW), 2019, pp. 3698–3702.

[37] “ElasticFusion repository,” http://github.com/mp3guy/ElasticFusion/, 2015.
[38] “KinectFusionApp repository,” https://github.com/chrdiller/KinectFusionApp,

2018.
[39] J. van Waveren, “The asynchronous time warp for virtual reality on consumer

hardware,” in Proc. 22nd Conf. on Virtual Reality Software and Technology,
2016, pp. 37–46.

[40] M. Persson, D. Engström, and M. Goksör, “Real-time generation of fully
optimized holograms for optical trapping applications,” in Optical Trapping
and Optical Micromanipulation VIII, K. Dholakia and G. C. Spalding, Eds.,
vol. 8097. International Society for Optics and Photonics, 2011, pp. 291–299.

[41] “libspatialaudio repository,” https://github.com/videolabs/libspatialaudio,
2019.

[42] R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation
of optimal holograms for optical trap arrays,” Opt. Express,
vol. 15, no. 4, pp. 1913–1922, Feb 2007. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-15-4-1913

[43] J.-H. R. Chang, B. V. K. V. Kumar, and A. C. Sankaranarayanan,
“Towards multifocal displays with dense focal stacks,” ACM Trans.
Graph., vol. 37, no. 6, pp. 198:1–198:13, Dec. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3272127.3275015

[44] Leap Motion, “Project North Star,” 2020. [Online]. Available:
https://github.com/leapmotion/ProjectNorthStar

[45] F. Hollerweger, “An introduction to higher order ambisonic,” 2008.
[46] M. Frank, F. Zotter, and A. Sontacchi, “Producing 3d audio in

ambisonics,” in Audio Engineering Society Conference: 57th International
Conference: The Future of Audio Entertainment Technology –
Cinema, Television and the Internet, Mar 2015. [Online]. Available:
http://www.aes.org/e-lib/browse.cfm?elib=17605

[47] D. Wagner, “Motion to Photon Latency in Mobile AR and VR,” 2018.
[Online]. Available: https://medium.com/@DAQRI/motion-to-photon-
latency-in-mobile-ar-and-vr-99f82c480926

[48] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE transactions
on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[49] J. Meng, S. Paul, and Y. C. Hu, “Coterie: Exploiting frame similarity to
enable high-quality multiplayer vr on commodity mobile devices,” in Proc.
of the 25th Intl. Conf. on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’20, 2020, p. 923–937.

[50] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, N. Dai, and H.-S. Lee, “Furion: Engineering
high-quality immersive virtual reality on today’s mobile devices,” IEEE
Transactions on Mobile Computing, 2019.

[51] A. Schollmeyer, S. Schneegans, S. Beck, A. Steed, and B. Froehlich,
“Efficient hybrid image warping for high frame-rate stereoscopic rendering,”
IEEE transactions on visualization and computer graphics, vol. 23, no. 4,
pp. 1332–1341, 2017.

[52] P. Andersson, T. Akenine-Möller, J. Nilsson, K. Åström, M. Oskarsson,
and M. Fairchild, “Flip: A difference evaluator for alternating images,”
Proceedings of the ACM in Computer Graphics and Interactive Techniques,
vol. 3, no. 2, 2020.

[53] Z. Li, C. Bampis, J. Novak, A. Aaron, K. Swanson, A. Moorthy, and
J. De Cock, “Vmaf: The journey continues,” https://netflixtechblog.com/
vmaf-the-journey-continues-44b51ee9ed12, October 2018.

[54] C. G. Bampis and A. C. Bovik, “Learning to predict streaming video qoe:
Distortions, rebuffering and memory,” ArXiv, vol. abs/1703.00633, 2017.

[55] M. Narbutt, J. Skoglund, A. Allen, M. Chinen, D. Barry, and A. Hines,
“Ambiqual: Towards a quality metric for headphone rendered compressed
ambisonic spatial audio,” Applied Sciences, vol. 10, no. 9, 2020. [Online].
Available: https://www.mdpi.com/2076-3417/10/9/3188

[56] NVIDIA, “NVIDIA AGX Xavier,” 2017. [Online]. Available:
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

[57] M. Leap, “Magic Leap 1,” 2019. [Online]. Available:
https://www.magicleap.com/en-us/magic-leap-1

[58] NVIDIA, “NVIDIA TX2,” 2017. [Online]. Available:
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
jetson-tx2/

[59] F. Abazovic, “Snapdragon 835 is a 10nm slap in Intel’s face ,” 2018. [Online].
Available: https://www.fudzilla.com/news/mobile/42154-snapdragon-835-
in-10nm-is-slap-in-intel-s-face

[60] Oculus, “Oculus Quest: All-in-One VR Headset,” 2019. [Online]. Available:
https://www.oculus.com/quest/?locale=en_US

[61] Stereolabs, “ZED Mini - Mixed-Reality Camera,” 2018. [Online]. Available:
https://www.stereolabs.com/zed-mini/

[62] Monado, “Sponza scene in Godot with OpenXR addon,”
https://gitlab.freedesktop.org/monado/demos/godot-sponza-openxr, 2019.

[63] Godot, “Material testers,” https://github.com/godotengine/godot-demo-
projects/tree/master/3d/material_testers, 2020.

[64] ——, “Platformer 3D,” https://github.com/godotengine/godot-demo-projects/
tree/master/3d/platformer, 2020.

[65] J. Linietsky, A. Manzur, and contributors, “Godot,” https://godotengine.org/,
2020.

[66] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik,
and R. Siegwart, “The EuRoC micro aerial vehicle datasets,” The International
Journal of Robotics Research, vol. 35, no. 10, pp. 1157–1163, 2016.

[67] S. J. Garbin, Y. Shen, I. Schuetz, R. Cavin, G. Hughes, and S. S. Talathi,
“OpenEDS: Open Eye Dataset,” 2019.

[68] F. Sinclair, “The vr museum of fine art,” 2016. [Online]. Available: https:
//store.steampowered.com/app/515020/The_VR_Museum_of_Fine_Art/

[69] “Science Teacher Lecturing,” May 2013. [Online]. Available:
https://freesound.org/people/SpliceSound/sounds/188214/

[70] “Radio Recording,” https://freesound.org/people/waveplay./sounds/397000/,
July 2017.

[71] “Freesound,” https://freesound.org/.
[72] NVIDIA, “Nsight systems,” 2020. [Online]. Available:

https://developer.nvidia.com/nsight-systems
[73] Intel, “Intel vtune profiler,” 2020. [Online]. Available: https:

//software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
[74] N/A, “perf,” 2020. [Online]. Available: https://perf.wiki.kernel.org/index.php/

Main_Page
[75] NVIDIA, “Nsight compute,” 2020. [Online]. Available:

https://developer.nvidia.com/nsight-compute
[76] ——, “Nsight graphics,” 2020. [Online]. Available:

https://developer.nvidia.com/nsight-graphics
[77] ——, “Nvidia system management interface,” 2020. [Online]. Available:

https://developer.nvidia.com/nvidia-system-management-interface
[78] G. Ali, S. Bhalachandra, N. Wright, A. Sill, and Y. Chen, “Evaluation of

power controls and counters on general-purpose graphics processing units
(gpus),” 2020.

[79] C.-H. Hsu, S.-H. Chang, J.-H. Liang, H.-P. Chou, C.-H. Liu, S.-C. Chang,
J.-Y. Pan, Y.-T. Chen, W. Wei, and D.-C. Juan, “Monas: Multi-objective
neural architecture search using reinforcement learning,” arXiv preprint
arXiv:1806.10332, 2018.

[80] J. Lew, D. A. Shah, S. Pati, S. Cattell, M. Zhang, A. Sandhupatla, C. Ng,
N. Goli, M. D. Sinclair, T. G. Rogers et al., “Analyzing machine learning
workloads using a detailed gpu simulator,” in 2019 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2019, pp. 151–152.

[81] Y. Leng, C.-C. Chen, Q. Sun, J. Huang, and Y. Zhu, “Energy-efficient
video processing for virtual reality,” in Proceedings of the 46th
International Symposium on Computer Architecture, ser. ISCA ’19.
New York, NY, USA: ACM, 2019, pp. 91–103. [Online]. Available:
http://doi.acm.org/10.1145/3307650.3322264

[82] NVIDIA, “Software-based power consumption modeling.”
[Online]. Available: https://docs.nvidia.com/jetson/l4t/index.html#page/
Tegra%20Linux%20Driver%20Package%20Development%20Guide/
power_management_jetson_xavier.html#wwpID0E0AG0HA

[83] ——, “Xavier series soc technical reference manual.” [Online]. Available:
https://developer.nvidia.com/embedded/dlc/xavier-series-soc-technical-
reference-manual

[84] B. Bauman and P. Seeling, “Towards predictions of the image quality of experi-
ence for augmented reality scenarios,” arXiv preprint arXiv:1705.01123, 2017.

[85] Y. Arifin, T. G. Sastria, and E. Barlian, “User experience metric for augmented
reality application: a review,” Procedia Computer Science, vol. 135, pp.
648–656, 2018.

[86] Y. Zhu, X. Min, D. Zhu, K. Gu, J. Zhou, G. Zhai, X. Yang, and W. Zhang,
“Toward better understanding of saliency prediction in augmented 360 degree
videos,” 2020.

[87] B. Zhang, J. Zhao, S. Yang, Y. Zhang, J. Wang, and Z. Fei, “Subjective
and objective quality assessment of panoramic videos in virtual reality
environments,” in 2017 IEEE International Conference on Multimedia &
Expo Workshops (ICMEW). IEEE, 2017, pp. 163–168.

[88] H. G. Kim, H.-T. Lim, and Y. M. Ro, “Deep virtual reality image quality
assessment with human perception guider for omnidirectional image,” IEEE

https://github.com/borglab/gtsam
http://github.com/mp3guy/ElasticFusion/
https://github.com/chrdiller/KinectFusionApp
https://github.com/videolabs/libspatialaudio
http://www.opticsexpress.org/abstract.cfm?URI=oe-15-4-1913
http://doi.acm.org/10.1145/3272127.3275015
https://github.com/leapmotion/ProjectNorthStar
http://www.aes.org/e-lib/browse.cfm?elib=17605
https://medium.com/@DAQRI/motion-to-photon-latency-in-mobile-ar-and-vr-99f82c480926
https://medium.com/@DAQRI/motion-to-photon-latency-in-mobile-ar-and-vr-99f82c480926
https://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12
https://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12
https://www.mdpi.com/2076-3417/10/9/3188
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://www.magicleap.com/en-us/magic-leap-1
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.fudzilla.com/news/mobile/42154-snapdragon-835-in-10nm-is-slap-in-intel-s-face
https://www.fudzilla.com/news/mobile/42154-snapdragon-835-in-10nm-is-slap-in-intel-s-face
https://www.oculus.com/quest/?locale=en_US
https://www.stereolabs.com/zed-mini/
https://gitlab.freedesktop.org/monado/demos/godot-sponza-openxr
https://github.com/godotengine/godot-demo-projects/tree/master/3d/material_testers
https://github.com/godotengine/godot-demo-projects/tree/master/3d/material_testers
https://github.com/godotengine/godot-demo-projects/tree/master/3d/platformer
https://github.com/godotengine/godot-demo-projects/tree/master/3d/platformer
https://godotengine.org/
https://store.steampowered.com/app/515020/The_VR_Museum_of_Fine_Art/
https://store.steampowered.com/app/515020/The_VR_Museum_of_Fine_Art/
https://freesound.org/people/SpliceSound/sounds/188214/
https://freesound.org/people/waveplay./sounds/397000/
https://freesound.org/
https://developer.nvidia.com/nsight-systems
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-graphics
https://developer.nvidia.com/nvidia-system-management-interface
http://doi.acm.org/10.1145/3307650.3322264
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html#wwpID0E0AG0HA
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html#wwpID0E0AG0HA
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html#wwpID0E0AG0HA
https://developer.nvidia.com/embedded/dlc/xavier-series-soc-technical-reference-manual
https://developer.nvidia.com/embedded/dlc/xavier-series-soc-technical-reference-manual

Transactions on Circuits and Systems for Video Technology, vol. 30, no. 4,
pp. 917–928, 2019.

[89] J. Yang, T. Liu, B. Jiang, H. Song, and W. Lu, “3d panoramic virtual reality
video quality assessment based on 3d convolutional neural networks,” IEEE
Access, vol. 6, pp. 38 669–38 682, 2018.

[90] H.-T. Lim, H. G. Kim, and Y. M. Ra, “Vr iqa net: Deep virtual reality image
quality assessment using adversarial learning,” in 2018 IEEE Intl. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 6737–6741.

[91] S. Han, B. Liu, R. Cabezas, C. Twigg, P. Zhang, J. Petkau, T.-H. Yu, C.-J.
Tai, M. Akbay, Z. Wang, A. Nitzan, G. Dong, Y. Ye, L. Tao, C. Wan, and
R. Wang, “Megatrack: monochrome egocentric articulated hand-tracking for
virtual reality,” ACM Transactions on Graphics, vol. 39, 07 2020.

[92] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib
Bin Altaf, N. Vaish, M. Hill, and D. Wood, “The gem5 simulator,” SIGARCH
Computer Architecture News, vol. 39, pp. 1–7, 08 2011.

[93] A. Sembrant, T. E. Carlson, E. Hagersten, and D. Black-Schaffer, “A graphics
tracing framework for exploring cpu+gpu memory systems,” in 2017 IEEE
Intl. Symposium on Workload Characterization (IISWC), 2017, pp. 54–65.

[94] T. Field, J. Leibs, J. Bowman, and D. Thomas, “rosbag,” 2021. [Online].
Available: http://wiki.ros.org/rosbag

[95] C. Xie, S. L. Song, J. Wang, W. Zhang, and X. Fu, “Processing-in-memory
enabled graphics processors for 3d rendering,” in 2017 IEEE Intl. Symp. on
High Performance Computer Architecture (HPCA), Feb 2017, pp. 637–648.

[96] C. Xie, X. Zhang, A. Li, X. Fu, and S. Song, “Pim-vr: Erasing motion
anomalies in highly-interactive virtual reality world with customized memory
cube,” in 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), Feb 2019, pp. 609–622.

[97] Y. Leng, C.-C. Chen, Q. Sun, J. Huang, and Y. Zhu, “Semantic-aware virtual
reality video streaming,” in Proc. of the 9th Asia-Pacific Workshop on Systems,
ser. APSys ’18, 2018, pp. 21:1–21:7.

[98] A. Mazumdar, A. Alaghi, J. T. Barron, D. Gallup, L. Ceze, M. Oskin, and
S. M. Seitz, “A hardware-friendly bilateral solver for real-time virtual reality
video,” in Proc. of High Performance Graphics, 2017, pp. 13:1–13:10.

[99] A. Mazumdar, T. Moreau, S. Kim, M. Cowan, A. Alaghi, L. Ceze,
M. Oskin, and V. Sathe, “Exploring computation-communication tradeoffs
in camera systems,” in 2017 IEEE International Symposium on Workload
Characterization (IISWC), Oct 2017, pp. 177–186.

[100] P. Ranganathan, D. Stodolsky, J. Calow, J. Dorfman, M. Guevara, C. W.
Smullen IV, A. Kuusela, R. Balasubramanian, S. Bhatia, P. Chauhan et al.,
“Warehouse-scale video acceleration: co-design and deployment in the wild,” in
Proceedings of the 26th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, 2021, pp. 600–615.

[101] T. Xu, B. Tian, and Y. Zhu, “Tigris: Architecture and algorithms for 3D
perception in point clouds,” in Proc. 52nd Annual IEEE/ACM Intl. Symposium
on Microarchitecture, ser. MICRO ’52, 2019, pp. 629–642.

[102] Y. Feng, B. Tian, T. Xu, P. Whatmough, and Y. Zhu, “Mesorasi: Architecture
support for point cloud analytics via delayed-aggregation,” 2020 53rd Annual
IEEE/ACM Intl. Symp. on Microarchitecture (MICRO), Oct 2020.

[103] J. Choi, E. P. Kim, R. A. Rutenbar, and N. R. Shanbhag, “Error resilient mrf
message passing architecture for stereo matching,” in SiPS 2013 Proceedings,
2013, pp. 348–353.

[104] Y. Feng, P. Whatmough, and Y. Zhu, “Asv: Accelerated stereo vision system,”
in Proc. 52nd Ann. IEEE/ACM Intl. Symp. on Microarchitecture, ser. MICRO
’52, 2019, pp. 643–656.

[105] Y. Zhu, A. Samajdar, M. Mattina, and P. Whatmough, “Euphrates: Algorithm-
soc co-design for low-power mobile continuous vision,” in Proc. of the 45th
Annual Intl. Symposium on Computer Architecture, 2018, pp. 547–560.

[106] S. Triest, D. Nikolov, J. Rolland, and Y. Zhu, “Co-optimization of optics,
architecture, and vision algorithms,” in Workshop on Approximate Computing
Across the Stack (WAX), 2019.

[107] V. Kodukula, A. Shearer, V. Nguyen, S. Lingutla, Y. Liu, and R. LiKamWa,
“Rhythmic pixel regions: multi-resolution visual sensing system towards
high-precision visual computing at low power,” in Proceedings of the 26th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, 2021, pp. 573–586.

[108] Q. Gautier, A. Althoff, and R. Kastner, “Fpga architectures for real-time
dense slam,” in 2019 IEEE 30th Intl. Conf. on Application-specific Systems,
Architectures and Processors (ASAP), vol. 2160-052X, 2019, pp. 83–90.

[109] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, “Navion: A
2-mw fully integrated real-time visual-inertial odometry accelerator for
autonomous navigation of nano drones,” IEEE Journal of Solid-State Circuits,
vol. 54, no. 4, pp. 1106–1119, April 2019.

[110] D. K. Mandal, S. Jandhyala, O. J. Omer, G. S. Kalsi, B. George, G. Neela, S. K.
Rethinagiri, S. Subramoney, L. Hacking, J. Radford, E. Jones, B. Kuttanna,
and H. Wang, “Visual inertial odometry at the edge: A hardware-software co-
design approach for ultra-low latency and power,” in 2019 Design, Automation
Test in Europe Conference Exhibition (DATE), March 2019, pp. 960–963.

[111] Y. Gan, Y. Bo, B. Tian, L. Xu, W. Hu, S. Liu, Q. Liu, Y. Zhang, J. Tang, and
Y. Zhu, “Eudoxus: Characterizing and accelerating localization in autonomous
machines industry track paper,” in 2021 IEEE Intl. Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2021, pp. 827–840.

[112] S. Zhao, H. Zhang, S. Bhuyan, C. S. Mishra, Z. Ying, M. T. Kandemir,
A. Sivasubramaniam, and C. R. Das, “Deja View: Spatio-Temporal Compute
Reuse for Energy-Efficient 360 VR Video Streaming,” in Proceedings of the
47th International Symposium on Computer Architecture, ser. ISCA ’20, 2020.

[113] T. Liu, S. He, S. Huang, D. Tsang, L. Tang, J. Mars, and W. Wang, “A
benchmarking framework for interactive 3d applications in the cloud,” 53rd
Ann. IEEE/ACM Intl. Symp. on Microarchitecture (MICRO), Oct 2020.

[114] X. Liu, C. Vlachou, F. Qian, C. Wang, and K.-H. Kim, “Firefly: Untethered
multi-user VR for commodity mobile devices,” in 2020 USENIX Annual
Technical Conference, Jul. 2020, pp. 943–957.

[115] K. Boos, D. Chu, and E. Cuervo, “Flashback: Immersive virtual reality
on mobile devices via rendering memoization,” in Proc. of the 14th Intl.
Conference on Mobile Systems, Applications, and Services, 2016, p. 291–304.

[116] Y. Li and W. Gao, “Muvr: Supporting multi-user mobile virtual reality with
resource constrained edge cloud,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC), 2018, pp. 1–16.

[117] C. Xie, X. Li, Y. Hu, H. Peng, M. Taylor, and S. L. Song, “Q-vr: system-level
design for future mobile collaborative virtual reality,” in Proc. 26th ACM
Intl. Conference on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 587–599.

[118] Y. Bao, T. Zhang, A. Pande, H. Wu, and X. Liu, “Motion-prediction-based
multicast for 360-degree video transmissions,” in 2017 14th Annual IEEE
International Conference on Sensing, Communication, and Networking
(SECON), 2017, pp. 1–9.

[119] M. Dasari, A. Bhattacharya, S. Vargas, P. Sahu, A. Balasubramanian, and S. R.
Das, “Streaming 360-degree videos using super-resolution,” in IEEE INFO-
COM - IEEE Conf. on Computer Communications, 2020, pp. 1977–1986.

[120] X. Hou, S. Dey, J. Zhang, and M. Budagavi, “Predictive view generation to en-
able mobile 360-degree and vr experiences,” in Proc. 2018 Morning Workshop
on Virtual Reality and Augmented Reality Network, ser. VR/AR Network ’18,
2018, p. 20–26. [Online]. Available: https://doi.org/10.1145/3229625.3229629

[121] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices,” in Proc.
24th Intl. Conf. on Mobile Computing and Networking, 2018, p. 99–114.

[122] “VRMark,” 2016. [Online]. Available: https://benchmarks.ul.com/vrmark
[123] “NVIDIA Frame Capture Analysis Tool,” 2017. [Online]. Available:

https://www.geforce.com/hardware/technology/fcat
[124] “Unigine Superposition Benchmark,” 2017. [Online]. Available:

https://benchmark.unigine.com/superposition
[125] L. Nardi, B. Bodin, M. Z. Zia, J. Mawer, A. Nisbet, P. H. J. Kelly, A. J.

Davison, M. Luján, M. F. P. O’Boyle, G. Riley, N. Topham, and S. Furber,
“Introducing slambench, a performance and accuracy benchmarking
methodology for slam,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA), 2015, pp. 5783–5790.

[126] B. Bodin, H. Wagstaff, S. Saecdi, L. Nardi, E. Vespa, J. Mawer, A. Nisbet,
M. Lujan, S. Furber, A. J. Davison, P. H. J. Kelly, and M. F. P. O’Boyle, “Slam-
bench2: Multi-objective head-to-head benchmarking for visual slam,” in 2018
IEEE Intl. Conf. on Robotics and Automation (ICRA), 2018, pp. 3637–3644.

[127] M. Bujanca, P. Gafton, S. Saeedi, A. Nisbet, B. Bodin, M. F. P. O’Boyle, A. J.
Davison, P. H. J. Kelly, G. Riley, B. Lennox, M. Luján, and S. Furber, “Slam-
bench 3.0: Systematic automated reproducible evaluation of slam systems
for robot vision challenges and scene understanding,” in 2019 International
Conference on Robotics and Automation (ICRA), 2019, pp. 6351–6358.

[128] R. D. Constantine, D. F. Quiros, C. Rodda, B. C. Brown, N. B. Zerkin, and
Á. Cassinelli, “Project esky: Enabling high fidelity augmented reality on an
open source platform,” Companion Proceedings of the 2020 Conference on
Interactive Surfaces and Spaces, 2020.

[129] Intel, “Tracking Solutions,” 2021. [Online]. Available:
https://www.intelrealsense.com/tracking

[130] H. Chen, Y. Dai, H. Meng, Y. Chen, and T. Li, “Understanding the Charac-
teristics of Mobile Augmented Reality Applications,” in Intl. Symp. on Perfor-
mance Analysis of Systems and Software (ISPASS), April 2019, pp. 128–138.

[131] J. Yi and Y. Lee, “Heimdall: mobile gpu coordination platform for augmented
reality applications,” in Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, 2020, pp. 1–14.

http://wiki.ros.org/rosbag
https://doi.org/10.1145/3229625.3229629
https://benchmarks.ul.com/vrmark
https://www.geforce.com/hardware/technology/fcat
https://benchmark.unigine.com/superposition
https://www.intelrealsense.com/tracking

APPENDIX: ARTIFACT INFORMATION

A. Abstract

The artifacts consist of ILLIXR version 1, ILLIXR version 2, Monado,
Godot, OpenXR test applications (AR Demo, Materials, Sponza,
Platformer), analysis scripts, raw data, graphs, regression tests, and
documentation.

Note that ILLIXR version 1 is the set of isolated components used for
§IVB, while ILLIXR Version 2 is the same components in an integrated
system used for §IVA. The artifact contains both. Where unspecified, we
are referring to ILLIXR version 2.

We have made the effort to automate as much as possible of the
installation process. For best results use a fresh install of Ubuntu 18.04 LTS
or 20.04.

B. Artifact check-list (meta-information)
• Program: ILLIXR v1, ILLIXR v2, Monado, Godot, OpenXR test

applications (AR Demo, Materials, Sponza, Platformer), analysis scripts.
• Compilation: Make 4.2, clang 10.0, CUDA 11.1, Python 3.8 (included

in install scripts)
• Data set: See §IIIC (included in artifact) and §IIID (downloaded by

program).
• Run-time environment: Ubuntu 18.04 + install scripts.
• Hardware: Any x86-64 system with an NVIDIA GPU can run, but one

needs the hardware in §IIIA for exact repeatability.
• Output: results/output/* and results/Graphs/*.
• Experiments: For each hardware platform, for each app, run ILLIXR.
• How much disk space required: 5Gb, including downloaded datasets
• How much time is needed to prepare workflow: 1 hour
• How much time is needed to complete experiments: 20 minutes per

hardware platform
• Publicly available: Yes, see archive URL.
• Code licenses: The system licensed under NCSA. Each component is

licensed under one of: ElasticFusion License, NCSA, MIT, Simplified
BSD, LGPL v3.0, LGPL v2.1, Boost Software License v1.0, GPL v3.0.
See https://github.com/ILLIXR/ILLIXR/#licensing-structure

• Data licenses: Each dataset is licensed under one of: proprietary,
ElasticFusion License, Creative Commons 0.

• Archived (provide DOI): https://doi.org/10.5281/zenodo.5523601

C. Description
1) How to access: One can find the version we used for this paper

here (https://doi.org/10.5281/zenodo.5523601), and a rolling release here
(https://github.com/ILLIXR/ILLIXR). We suggest using the rolling release, unless
exact repeatability is desired.

2) Hardware dependencies: One can find the hardware we used for this
paper in §IIIA. ILLIXR will still work on a generic x86-64 Ubuntu system with
a GPU, but the results may not be exactly repeatable.

3) Software dependencies: Refer to NVIDIA’s instructions for your GPU
to install the proprietary NVIDIA driver and NVIDIA CUDA SDK.

./install_deps.sh
This script is idempotent, so there is no harm in interrupting it and running it

twice. It installs basic build tools, profiling tools, Python, ROS, conda, OpenCV
3.4, Eigen, datasets, and several other resources.

See our online documentation for more details:
https://illixr.github.io/ILLIXR/getting_started

4) Data sets: The software pulls required datasets automatically when
downloading software dependencies.

D. Installation
Not applicable.

E. Experiment workflow
First, we have to compile each application with Godot:

for app_path in OpenXR-Apps/*; do
./godot/bin/godot.x11.opt.tools.64
Import project (project.godot) (fig 1)
Export project (fig 2)

Select "Linux (Runnable)" (fig 3)
Select Custom Template="./godot/bin/godot.x11.opt.tools.64"
Select Export Path="./OpenXR-Apps/$app/bin"
Where app is replaced by $app shorname (e.g. "sponza")

done
Then, we run each application in ILLIXR V2:

hardware=""
manually set to one of "jetsonlp", "jetsonhp", "desktop"
for app_path in OpenXR-Apps/*; do
app=$(basename ${app_path})
cmd="./ILLIXR/runner.sh ILLIXR/configs/${app}.yaml"
${cmd}
nvidia-smi -q --display=UTILIZATION,POWER,TEMPERATURE \
--loop-ms=200

perf stat -e power/energy-cores/,power/energy-pkg/,power/energy-ram/ \
-- ${cmd}

mv ILLIXR/metrics results/metrics/metrics-${hardware}-${app}
done

To switch between high- and low-power mode on Jetson
sudo jetson_clocks --restore ${lp_or_hp}_mode.txt

F. Evaluation and expected results
Make sure to synchronize the results/metrics/ directory from all

hardware platforms onto the desktop before continuing. On the desktop, run
cd results/analysis
poetry run python3 main.py

The output from our run is available in metrics-snapshot and our graphs
are available in Graphs-snapshot.

• Fig 3 is results/Graphs/fps-jlp/jhp/desktop.pdf
• Fig 4 is results/Graphs/timeseries-platformer-desktop-
1.pdf and results/Graphs/timeseries-platformer-
desktop-2.pdf

• Fig 5 is results/Graphs/cpu-breakdown.pdf
• Fig 6 is results/Graphs/power-total.pdf and
results/Graphs/power-breakdown.pdf

• Fig 7 is results/Graphs/mtp-platformer.pdf
• Fig 8 is results/Graphs/microarchitecture.pdf

To replicate Table VI, run ./ILLIXRv1/all.sh and see the reported
statistics in stdout.

To replicate Table VII, run Visual Reprojection and Hologram in NVIDIA©

NsightTM Systems, and run Audio Encoding and Audio Decoding in Intel© VTuneTM

Hotspot Analysis. See ./ILLIXRv1/all.sh for the commands to analyze.
To replicate Fig 8, run each non-trivial command of ILLIXRv1/all.sh in

Intel© VTuneTM Microarchitectural Exploration Analysis.
See https://illixr.github.io/ILLIXR/legacy/v1/ for more details on running the

components of ILLIXR v1.

G. Experiment customization
Here are customizations we anticipate:
• Modify or add your own app to ILLIXR/app/*.
• Add your own analysis pass to results/analysis/*.py
• Add your own plugin to the ILLIXR system in ILLIXR/*. See our online

documentation for details:
https://illixr.github.io/ILLIXR/writing_your_plugin/

https://github.com/ILLIXR/ILLIXR/#licensing-structure
https://doi.org/10.5281/zenodo.5523601
https://doi.org/10.5281/zenodo.5523601
https://github.com/ILLIXR/ILLIXR
https://illixr.github.io/ILLIXR/getting_started
https://illixr.github.io/ILLIXR/legacy/v1/
https://illixr.github.io/ILLIXR/writing_your_plugin/

Fig. 9: Import a project in Godot

Fig. 10: Export a project in Godot

Fig. 11: Select export options in Godot

