Fun do pass rate.

MechSE's Fundamentals of Engineering (FE) certification exam, with a near-per- professionally employed or pursuing graduate school. MechSE 100% of our students reporting post-graduation plans were either even the toughest engineering problems. Upon graduation, nearly MechSE students gain the critical thinking skills necessary to solve them qualify for medical school.

Additionally, with MechSE's pre-med track, our undergraduate students have an option to follow a specialized program of courses that will help them qualify for medical school. Many enthusiastically engage undergraduate students in their world-class research programs.

The Engineering Mechanics and Mechanical Engineering curricula offer a wide variety of courses, including an integrated hands-on design sequence beginning in the freshman year and culminating in Senior Capstone Design, where students develop a solution to a real-world, company-sponsored problem. Additionally, with MechSE's pre-med track, our undergraduate students have an option to follow a specialized program of courses that will help them qualify for medical school.

MechSE students gain the critical thinking skills necessary to solve even the toughest engineering problems. Upon graduation, nearly 100% of our students reporting post-graduation plans were either professionally employed or pursuing graduate school. MechSE students also strongly outpace national averages on the national Fundamentals of Engineering (FE) certification exam, with a near-perfect pass rate. mechse.illinois.edu/undergraduate

OUR DEGREE PROGRAMS

Having seven exceptional degree programs in Mechanical Engineering, Engineering Mechanics, and Theoretical and Applied Mechanics within the same department allows our students to tailor their curricula while providing departmental resources like the unparalleled strengths of our faculty in seven fundamental research areas and six focused societal impact areas (see the matrix, next page).

Our degree programs provide students with choice in how and what they learn:

- BS, M.Eng., MS, and PhD degree programs in Mechanical Engineering (online options for M.Eng. and MS)
- BS degree program in Engineering Mechanics
- MS and PhD degree programs in Theoretical and Applied Mechanics

UNDERGRADUATE

MechSE's undergraduate programs are consistently among the top-ranked Engineering Mechanics and Mechanical Engineering programs in the world as a result of pedagogical innovation, state-of-the-art instructional laboratories, distinguished faculty, excellent undergraduate research opportunities, active student societies, a collegial and collaborative environment, and exceptional students from around the world. Our primary goal is to educate our students to become future leaders in engineering, science, technology, and beyond, leading the way toward improving society's quality of life.

MechSE faculty are internationally renowned for their diverse research and excellence in teaching. Many enthusiastically engage undergraduate students in their world-class research programs.

Our instructional and research laboratories give students hands-on experience and provide exposure to a wide range of areas, including biomechanics, combustion, controls systems, dynamical systems, fluid dynamics, heat transfer, machine design, manufacturing, materials testing, mechatronics, metrology, micro-nano mechanical systems, and robotics. Our newly renovated building provides students with the newest equipment and tools to realize their designs.

The Engineering Mechanics and Mechanical Engineering curricula offer a wide variety of courses, including an integrated hands-on design sequence beginning in the freshman year and culminating in Senior Capstone Design, where students develop a solution to a real-world, company-sponsored problem.

Additionally, with MechSE's pre-med track, our undergraduate students have an option to follow a specialized program of courses that will help them qualify for medical school.

29.8 average number of AP credit hours of incoming undergraduate students

- #7 ranked undergraduate programs
- #5 ranked research-based graduate programs
- #2 ranked online master's programs

GRADUATE

Our students thrive throughout their advanced studies in Mechanical Engineering or in Theoretical and Applied Mechanics thanks to the excellence of our faculty, the diversity and complexity of our research opportunities, and the individualized programs of study we strive to create for each of our students. MechSE graduates go on to top positions in academia, industry, and government labs, and our programs have earned a reputation as some of the best in the world.

Many of MechSE's graduate research opportunities lie at the intersection of diverse areas of specialization. Our scholars are immersed in a multitude of cross-disciplinary research efforts, training our students to be among the most innovative engineers in the world.

Student engagement is another hallmark of MechSE programs. The department fosters a culture that is highly supportive and collegial while offering all the benefits of a large department within a world-renowned institution. Many of our students actively participate in student and professional organizations, including Graduate MechSE Students (GraMS), Engineers Volunteering in Stem Education (ENVISION), the Society of Women Engineers (SWE), the National Society of Black Engineers (NSBE), and the Society of Hispanic Professional Engineers (SHPE). mechse.illinois.edu/graduate

All Grainger Engineering PhD students in good academic standing are guaranteed funding (full tuition, partial fees, and a stipend) for the first five years of their program.

The majority of MS students can receive tuition and fee waivers through securing an advisor who offers an RA appointment.

RESEARCH CENTERS

Our science-based approach brings MechSE researchers into close contact with researchers in other departments, universities, and research institutions. Our faculty are major participants in activities at the department, college, and university level via research centers.

- Air Conditioning and Refrigeration Center (ACRC)
- Center for Networked Intelligent Components and Environments (C-NICE)
- Center for Autonomy
- Center for Hypersonics and Entry Systems Studies (CHESS)
- Center for UAS Propulsion (CUP)
- Fracture Control Program (FCP)
- Center for Novel High-Voltage/Temperature Materials and Structures (HV/TMS)
- International Institute for Carbon-Neutral Energy Research (I2CNER)
- Illinois Materials Research Science and Engineering Center (I-MRSEC)
- nanoMFG
- National Science Foundation Data and Informatics Graduate Intern-Traineeship: Materials at the Atomic Scale (DIGI-MAT)
- NSF PIRE (Partnerships in International Research and Education)
- Center for Power Optimization of Electro-Thermal Systems (POETS)
- Center for Wearable Intelligent Technologies (WIT)
- Center for Exascale Simulation of Plasma-Coupled Combustion (XPACC)

Campus-Level Institutes

- Beckman Institute for Advanced Science and Technology
- Coordinated Science Laboratory (CSL)
- Carl R. Woese Institute for Genomic Biology
- Frederick Seitz Materials Research Laboratory (MRL)
- National Center for Supercomputing Applications (NCSA)
- Nick Holonyak Micro and Nanotechnology Laboratory (MNTL)
Mechanical engineering has traditionally dealt with objects and systems at macroscopic length scales. As system size has decreased to the nanoscale, the research efforts in the Department of Mechanical Science & Engineering have focused on phenomena at surfaces and length scales that have historically been the domain of physics and chemistry. At the same time, mechanical engineers use a systems approach to create new ideas and products that are far-reaching in order to meet societal needs. Research at MechSE, therefore, is pivotal, creating opportunities at the intersection of science and engineering.

MechSE faculty are engaged in six significant areas that impact society as a whole: Energy; Environment; Health and Bio; Manufacturing; Security and Defense; and Transportation.

2021-22 FAculty reSEARCH AT A GlANCE

To have the greatest impact on the world around us, MechSE faculty have aligned their research efforts with societal needs. The seven columns of our faculty research matrix list the fundamental areas of the discipline, while the six rows represent critical societal needs.

<table>
<thead>
<tr>
<th>FUNDAMENTAL AREAS</th>
<th>SOLID MECHANICS AND MATERIALS</th>
<th>THERMO AND HEAT TRANSFER</th>
<th>APPLIED PHYSICS</th>
<th>CHEMISTRY</th>
<th>DYNAMICS AND CONTROLS</th>
<th>COMPUTATION AND APPLIED MATH</th>
</tr>
</thead>
</table>

Read more at mechse.illinois.edu/research.
Nikhil Chandra Admal: Assistant Professor / PhD, University of Minnesota, 2014. Current research: Solid mechanics; computational mechanics with a focus on materials defects in crystalline systems; and interaction between atomic and continuum domains in multiscale modeling of materials. Developed models to study grain boundary-mediated plasticity in phenomena such as recrystallization and superplasticity in metalurgy. Developed a unified framework to link atomistic and continuum models such as classical and gradient elasticity with potential applications in multiscale modeling of materials.

Andrew Alleyne: Ralph M. and Catherine V. Fisher Professor / PhD, University of California, Berkeley, 1994. Current research: Control of nonlinear mechanical systems; theory and application. Developed modeling, simulation, and control approaches for dynamic thermal systems and applied them for mobile and stationary applications.

Gaurav Bahl: Associate Professor and Kritzer Faculty Scholar / PhD, Stanford University, 2010. Current research: Optical forces and optomechanics; micro-mechanical oscillators; spinors and other exotic quantum states; and the first microfluidic device that is mechanically actuated by light, with vibrational frequencies in the GHz regime. Demonstrated that light can be used to eliminate scattering induced mechanical losses in microsystems. Received a 2019 Presidential Early Career Award for Scientists and Engineers (PECASE).

Armand Beaudoin: Research Professor and Professor Emeritus / PhD, Cornell University, 1993. Metal plasticity; process modeling; simulation; and biomechanics.

Joseph Bentsman: Professor / PhD, Illinois Institute of Technology, 1984. Current research: Control of nonlinear and distributed parameter systems; nonlinear oscillations; neural control systems; and theoretical and experimental fluid mechanics in complex multiscale methods. Introduced a new class of dynamical systems with active singularities that admit control actions during the singular phases of their motion.

Quinn Brewster: Professor / PhD, University of California, Berkeley, 1981. Current research: Atmospheric radiation; radiation effects on cloud and mist droplet evolution; phase-change radiation. Defined parameters that characterize radiation effect on cloud and mist droplet evolution during evaporation and condensation.

Clark Bullard: Research Professor and Professor Emeritus / PhD, University of Illinois Urbana-Champaign, 1971. Thermal systems simulation and optimization.

Lili Cai: Assistant Professor / PhD, Stanford University, 2016. Current research: Combustion synthesis; nanoscale materials; energy storage and conversion; smart wearables; personal thermal management; thermal radiation. Developed rapid and scalable flame synthesis methods and nanomaterials for renewable energy with thermal and optical applications. Developed a framework for local thermal radiation properties for localized thermal management of human body.

Leonardo P. Chamarro: Associate Professor / PhD, University of Minnesota, 2010. Current research: Turbulence and fluid mechanics; particle dynamics; flow-structure interaction; wind and marine energy; advanced flow diagnostics; geophysical flows with focus on turbulent boundary layer processes. Developed a framework to study the interaction between turbulence and wind waves in spectral domain, and a robust tracking algorithm for Lagrangian description of turbulence.

Wayne Chang: Lecturer / PhD, University of California, Irvine, 2011. Atmospheric transport and chemistry; air pollution control; internal combustion engines.

Harry Dankowicz: Professor, Cannon Faculty Scholar / PhD, Cornell University, 1995. Current research: Dynamical systems; complex networks; computational methods; robotics. 10th year as Editor-in-Chief of Applied Mechanics Reviews, the flagship review journal of the American Society of Mechanical Engineers. Program Director, National Science Foundation. Completed five-year term as Associate Dean of Undergraduate, Professor Education. Also, Editor-in-Chief of Applied Mathematical Modelling, a journal devoted to the applications of mathematics to the study of engineering, the sciences, and the technology. Current research: Control of nonlinear and distributed parameter systems; nonlinear oscillations; neural control systems; and theoretical and experimental fluid mechanics in complex multiscale methods. Introduced a new class of dynamical systems with active singularities that admit control actions during the singular phases of their motion.

Stefan Ebel: Research Assistant Professor / PhD, University of Illinois Urbana-Champaign, 2007. Current research: Experimental and numerical research in thermodynamics, fluid mechanics, and heat transfer; energy conversion systems; heating and cooling applications with focus on HVAC&R; optimization of capacity and energy efficiency in HVAC&R systems; low-GWP refrigerants, including natural and synthetic working fluids; expansion work recovery, flow induced noise, heat transfer measurements, heat exchanger design and optimization, innovative cooling systems. Developed and optimized controllable two-phase ejector for thermal energy recovery (TERC), helping to make thermal energy recovery more widespread.

Elfie Ertekin: Associate Professor, Andreas Faculty Scholar, and Director of the Mechanics Program / PhD, University of California, Berkeley, 2006. Current research: Computational modeling; mechanical properties at the nanoscale; energy storage and conversion; defect-property relationships; shape memory alloys. Developed models defect-mediated phase transitions, structure/property relations and vibrational energy transport at the nanoscale. Applied computer models to simulate materials for novel photovoltaic, thermoelectric, and other energy conversion materials.

Randy Ewoldt: Professor and Kritzer Faculty Scholar / PhD, Massachusetts Institute of Technology, 2009. Current research: Rheology; fluid mechanics; soft matter; design. Made the first complete measurement of weakly-nonlinear oscillatory rheology, which had been theoretically anticipated for over 50 years, and combined this with new theoretical modeling to infer molecular architecture of complex fluids.

Jie Feng: Assistant Professor / PhD, Princeton University, 2016. Current research: Fluids in multiphase systems. Analyzed bubble and jet dynamics at a compound interface. Developed a versatile nanoprecipitation platform for nanoparticle-oriented bioengineering and drug delivery. Developed a modeling framework for osmotic delivery and release of vesicles under light-triggered chemical reactions.

Placid Ferreira: Tungchao Julia Lu Professor / PhD, Purdue University, 1987. Current research: Nanomanufacturing; nanomechanics; manufacturing automation and systems control; process planning; programmable machines. Developed solid-state superionic stonping (S4), a process for stamping nanoscale metallic structures; high-resolution electrohydrodynamic writing for direct writing of sub-micron structures; fully functional parallel electronics two and three degree-of-freedom MEMS and Mesoscale positioning stages.

Paul Fischer: Professor / PhD, Massachusetts Institute of Technology, 1989. Current research: High-order methods and scalable algorithms for computational fluid dynamics and heat transfer. Developed the first commercial software for distributed memory parallel computers.

Bruce Flachsbart: Teaching Assistant Professor and Director of Engineering Student Project Laboratory / Ph.D., University of Illinois Urbana-Champaign, 1999. Micro-Electro-Mechanical System (MEMS) device design and fabrication.

Jonathan Freund: Donald Biggar Willard Professor and Kritzer Faculty Scholar / PhD, Stanford University, 1998. Current research: Fluid mechanics; bioengineering; computational predictive science. Developed advanced multi-physics simulation methods to design novel scramjets; studying complex-fluid mechanics; incorporating machine-learning methods into scientific computation. Developed a means of constraining neural-network training by the physics of the governing equations to provide robust and accurate turbulence models.

Matti Gazzola: Assistant Professor / PhD, ETH Zurich, 2013. Current research: Biofluids; computational soft robotics; computational fluid dynamics; bio-inspired optimization. Developed inverse design approach for optimal bio-locustoanation strategies; discovered universal scaling laws of inertial swimming; designed first tissue-engineered cyborg ray.

Nick Glumac: Shao Lee Soo Professor and Cannon Faculty Scholar / PhD, California Institute of Technology, 1994. Current research: Spectroscopy of reacting flows and energetics; combustion diagnostics; metal combustion. Produced definitive evidence that the transition away from diffusion-limited combustion in aluminum combustion occurs in the particle size range of 1 to 20 microns.

Jiajun He: Teaching Assistant Professor and Faculty Director of M.Eng.ME Program / PhD, Stanford University, 2016. Current research: Porous materials for clean energy applications; carbon capture; fluid phase and interfacial behaviors associated with oil and gas production. Proposed a model to describe the phase behaviors of hydrocarbon mixtures under nanopore confinement. Developed a design model to optimize porous carbon to enhance methane volumetric storage capacity.
Herman Krier: Research Professor and Professor Emeritus / PhD, Princeton University, 1968. Reactive gas dynamics; internal ballistics of rockets and guns; combustion physics; plasma dynamics.

Peter Kurath: Research Professor and Professor Emeritus / PhD, University of Illinois Urbana-Champaign, 1984. Fatigue, fracture, plasticity and nonlinear deformation modeling; veterinary biomechanics; structural design.

Chia-Fon Lee: Professor / PhD, Princeton University, 1995. Current research: Modeling of two-phase turbulent reacting flows; internal combustion engines; liquid atomization; spray systems. Developed and demonstrated the first successful application of two-phonon nitride laser-induced fluorescence measurements in a diesel engine.

Leon Liebenberg: Teaching Associate Professor / PhD, University of Johannesburg, South Africa, 2003. Current research: Pedagogies of engagement and emotional learning strategies; sustainable energy systems; design-thinking. Co-patented a non-toxic cancer therapy based on energy restriction methods. Founded and leads the UIUC Sustainability Competition for Undergraduates. Co-developed a novel engineering course based on the precepts of whole-minded thinking and interdisciplinary teams. Co-founded the Teknolab technology awareness facility in South Africa, which employs learning-through-play at schools.

Moše Matafon: Grainger College of Engineering Caterpillar Distinguished Professor / PhD, Cornell University, 1977. Current research: Combustion theory; modeling and experimental investigation of chemical reaction and diffusion flames; theoretical fluid mechanics; applied mathematics; stability and bifurcation theory; asymptotic and perturbation methods. Developed (i) hydrodynamic theory of flame propagation in premixed combustible gases that includes the well-known flame speed–flame stretch relation and a coordinate-free expression for the flame stretch rate, (ii) comprehensive criteria for the onset of instabilities in premixed combustion, (iii) theory for premixed turbulent flames, (iv) multi-dimensional, time-dependent theory of diffusion flames that includes complete burning, partial burning and extinction, (v) first characterization of thermo-diffusive instabilities in diffusion flames (cellular and pulsating), (vi) numerous contributions to droplet and solid particle combustion, edge flame dynamics, micro-scale combustion and combustion in porous media, and flame acceleration in long narrow channels.

Katie Matlack: Assistant Professor / PhD, Georgia Institute of Technology, 2014. Current research: Wave propagation in complex media; architectured and phononic materials; carbos and photonic materials; composite manufacturing; fabrication; nonlinear ultrasonic. Developed 3D-printed metamaterials for broadband and low frequency vibration absorption; showed the feasibility of using nonlinear ultrasonic techniques to monitor irradiation damage in nuclear reactor pressure vessel steels.

Prashant Mehta: Professor / PhD, Cornell University, 2004. Current research: Dynamical systems; control theory; nonlinear estimation. Invented the feedback particle filter algorithm for nonlinear estimation.

Glennys Mensing: Research Assistant Professor and Assistant Director, MNMS Laboratory / PhD, Vanderbilt University, 1999. Microfluidics and microfabrication.

Brian Mercer: Lecturer / PhD, University of California, Berkeley, 2016. Computational and theoretical solid mechanics; molecular dynamics methods; multiscale modeling.

Nenad Miljkovic: Associate Professor and Kritzer Faculty Scholar / PhD, Massachusetts Institute of Technology, 2013. Current research: Phase change heat transfer (boiling, evaporation, condensation, and freezing); anti fouling coatings, anti-corrosion coatings, anti-bacterial coatings, fluidic devices, droplets and bubbles; micro/nanofabrication; interfacial phenomena; solar energy conversion. Developed guidelines for the design, optimization, and fabrication of micro/nano-structured surfaces to enhance phase change heat transfer.

Martin Ostoj-Starzewski: Professor / PhD, McGill University, 1983. Current research: Mechanics and transport in random and fractal media; helices and chiral media; non-classical thermal mechanics; stochastic wave phenomena; convective, convective/pulsating, and turbulent brain injury. Developed (i) models of impact waves in man-made and natural media, including human brains under concussion; (ii) micromechanically based scaling laws, random fields, and stochastic finite elements; (iii) universal elastic anisotropy index; (iv) modification of continuum mechanics accounting for spontaneous nanoscale violations of the entropy inequality; (v) mechanics of helically-wound cables; (vi) electromagnetic shielding by nanocomposites.

Arne Pearlstein: Professor / PhD, University of California, Los Angeles, 1983. Current research: Computational studies of incompressible flow, with applicability to stability; vortex shedding; contaminant removal, and chemically reacting systems; experimental development of transparent, immiscible, refractive index-matched fluids and systems for synchrotron radiation, and for use in the first, and most of the known, multi-valued stability boundaries in fluid mechanics.

James Phillips: Professor Emeritus / PhD, Brown University, 1969. Structural testing. Developed a load cell for measuring simultaneously the axial force and twisting moment in wire ropes.
Michael Philpott: Lecturer and Associate Professor Emeritus / PhD, Certified Institute of Technology, 1987. Feature-based cost analysis; micro-miniature systems design for manufacture and assembly; rapid prototyping and layered manufacturing.

João Ramos: Assistant Professor / PhD, Massachusetts Institute of Technology, 2011. Current research: Robust control; design and control for dynamic motions; human-machine interfaces; bio-inspired robotics. Developed a bilateral feedback teleoperation system to synchronize the motion of a human operator and that of a humanoid robot for dynamic manipulation and agile locomotion.

M. Taher Saif: Edward William and Jane Gutsell Professor / PhD, Cornell University, 1993. Current research: Mechanics of microelectromechanical systems (MEMS); nanoscale materials behavior; neuro-mechanics; mechanics of cancer cells and tumor microenvironment; biological machines; single cell mechanics. Discovered a new phenomenon where plasticly deformed nano crystalline metals recover up to 80 percent of the plastic strain under macroscopically stress-free conditions; neurons in embryonic fruit flies actively maintain a rest tension, which is essential for neurotransmission.

Srinivasa Salapa: Professor / PhD, University of California, Santa Barbara, 2002. Current research: Robust control, scanning probe microscopy, precision positioning systems, combinatorial optimization, machine learning algorithms, and control of power electronics and systems. Developing new control architectures for bottom-up power grids.

Huseyn Sehitoglu: Professor and John, Alice, and Sarah Nyquist Endowed Chair / PhD, University of Illinois Urbana-Champaign, 1983. Current research: Ther- min-mechanical behavior of materials; phase transformations and shape memory. Developed a model for determining the crystal orientation dependence of critical resolved shear stress for slip in shape memory alloys; developed an atomistic-continuum treatment to predict threshold stress intensity in fatigue in agreement with experiments.

Chenhui Shao: Assistant Professor / PhD, University of Michigan, 2016. Current research: Smart manufacturing; machine learning; statistics; big data analytics in manufacturing; materials joining; manufacturing systems control and automation. Developed data fusion-based learning and decision-making techniques for manufacturing process control. Developed a suite of data-efficient machine learning methods for advanced manufacturing applications.

Sanjiv Sinha: Associate Professor and Associate Head for Undergraduate Programs / PhD, Stanford University, 2005. Current research: Thermoelectric energy conversion physics, materials, and devices; thermoelectrics and thermophysics energy storage; fundamental heat conduction physics; intracell thermometry. Developed and patented roll-to-roll fabricated hybrid metal-polymer heat exchangers for waste heat harvesting; developed and patented a thermometer for measuring temperatures inside living cells; developing thermal storage energy technologies for buildings and industrial process heating.

Kyle C. Smith: Associate Professor / PhD, Purdue University, 2012. Current research: Electrochemical separations and energy storage; multi-scale computational modeling; mass, charge, heat, and fluid transport in heterogeneous and porous materials; thermodynamics of electrochemical materials. Developed and predicted strategies to desalinate water in porous electrodes using battery materials. Developing ion sorption materials with molecular recognition guided by atomistic and pore-scale modeling.

Darrell Socie: Lecturer and Professor Emeritus / PhD, University of Illinois Urbana-Champaign, 1977. Fatigue of metallic machine components and structures.

Petros Sforonis: James W. Bayne Professor and Associate Head for Graduate Programs - Materials Science Engineering / PhD, University of Illinois Urbana-Champaign, 1987 Current research: Solid mechanics; elastic-plastic fracture mechanics; materials compatibility with hydrogen; mechanics of next generation nuclear reactor materials; finite element methods. Rationalized and linked for the first time the effects of hydrogen at the microscale with evidence of hydrogen-induced flow localization at the macroscale.

Kelly Stephani: Associate Professor and Kritzer Faculty Fellow / PhD, University of Texas at Austin, 2012. Current research: Computational modeling of non-equilibrium flows; gas/plasma-surface interactions; characterization of material defects/properties. Established the mapping between gas-phase chemical kinetics, surface energetics, and material degradation for high-temperature materials subject to oxidation. Received a 2019 Presidential Early Career Award for Scientists and Engineers (PECASE). Co-director of the University Consortium for Applied Hypersonics under the Joint Hypersonics Transition Office, OUSD(R&E).

D. Scott Stewart: Research Professor and Shao Lee Soo Professor Emeritus / PhD, Cornell University, 1981. Multiphase, multimaterial, multiphysics component theory and advanced simulation applied to complex high energy density materials.

Sameh Tawfick: Associate Professor / PhD, University of Michigan, 2012. Current research: Material design, processing and manufacturing; mechanics of materials. Developed synthesis and self-assembly processes to manufacture multi-functional nanorod composites.

Brian Thomas: Research Professor and C. J. Gauthier Professor Emeritus / PhD, University of British Columbia, 1985. Metals processing simulation; modeling of continuous casting; steel processing; numerical methods for solidification phenomena.

Daniel Tortorelli: George B. Grim Professor Emeritus / PhD, University of Illinois Urbana-Champaign, 1988. Solid and continuum mechanics; computational mechanics; design optimization. Applying these methodologies to design impact-resistant armor; design thermoelectric composite materials with novel properties, identify defects and crack initiation sites in solid bodies, generate representative river models for oil exploration, and design light-weight structures that are readily cast.

Charles Tucker III: Research Professor and Alexander D. Rankin Professor Emeritus / PhD, Massachusetts Institute of Technology, 1978. Polymers and composite materials; quantitative modeling of processing/microstructure/property relationships; numerical methods. Developed a model for flow-induced fiber orientation that is used in all major injection-molding software packages.

Alexander Vakakis: Donald Biggar Willett Professor / PhD, California Institute of Technology, 1990. Current research: Nonlinear dynamics and vibrations; non-smooth dynamics; nonlinear modal analysis, reduced-order modeling and nonlinear model updating; granular acoustic metamaterials, nonresoceptivespasticities and stress wave tailoring; targeted energy transfer and vibration energy harvesting, nano- and micro-resonators; passive control of vortex-induced vibrations and aeroelastic instabilities; intentional nonlinearity in design. Working on a new concept for intentional use of strong nonlinearity in design and nonlinear passive energy management; formulated novel nonparametric multi-scale system identification methodologies.

Arend van der Zande: Associate Professor / PhD, Cornell University, 2011. Current research: Nanomechanics, and functional devices from nanoscale materials and heterostructures; nanoelectromechanical systems (NEMS); atomically precise nanomanufacturing techniques. Developed graphene-based NEMS. First observed atomic grain boundary structure and properties in 2D molecular membranes. Developed techniques for building functional electronic and photonic devices from 2D material heterostructures.

Pratap Vanka: Research Professor and Professor Emeritus / PhD, Imperial College, London, 1975. Computational fluid dynamics; multgrid methods; large eddy simulations of turbulence. Developed innovative multigrid algorithms for Navier-Stokes equations (Vanka Smoother); applied CFD for a large number of diverse applications in single and multiphase flows, using parallel computers and GPUs. Earned Freeman Scholar Award from ASME, and VAJRA Professorship from India.

Amy Waggoner Johnson: Professor and Andersen Faculty Scholar / PhD, Brown University, 2002. Current research: Design, manufacture, characterization, and mechanical behavior of materials for bone replacement and repair; cell-material interactions; characterization of soft tissue for applications to preterm birth. Demonstrated bone formation in micron-sized pores and that microporosity and an osteoinductive scaffold factor are complementary, roles in bone regeneration in CaP scaffolds with multi-scale porosity.

Ning Wang: Leonard C. and Mary Lou Holtz Professor / PhD, Harvard University, 1990. Current research: Cytoskeletal biomechanics; cellular mechanobiology; mechanotransduction; stem cell and cancer cell mechanics and biology; mechanomedicine; bio-imaging of cytoskeletal structures and stress distribution in living cells. Developed intracellular stress tomography technology and used it to address fundamental questions about stress distribution and mechanotransduction in living cells.

Sophie Wang: Research Assistant Professor / PhD, Xi’an Jiaotong University, 2012. Current research: Thermodynamics, heat transfer, and fluid mechanics. Fundamentals of single-phase and two-phase convection, phase change and stability with applications in energy systems. Heat transfer enhancement, coefficient of performance (COP) improvement, optimization, and control for heating and cooling systems.

Matthew West: Associate Professor and William H. Severs Faculty Scholar / PhD, California Institute of Technology, 2004. Current research: Computational methods; multiscale time integration. Developed the theory of variational time integration methods; obtained fully asynchronous integrators for computational mechanics.

Aimy Wissa: Assistant Professor / PhD, University of Maryland, 2014. Current research: Structural dynamics and control, bio-inspired design of multi-functional structures and mechanisms for mechanical and aerospace systems, experimental evaluation of active and passive control of unmanned air vehicles. Developed passive and active wing morphing systems to improve the performance of flapping and fixed wing unmanned air vehicles.