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Abstract

In this research, we explored the assortment optimization for multi-category products. We built a Markov chain
choice model to model customers’ choices in a two-category retail systems and generalize the correlation within
and between categories as state transition. Based on the asymmetric cross-selling effect, we classified the two cat-
egories by the primary category and secondary category and assumed that both the initial interests and transition
of interests in the the secondary category products depend on the purchase decision in the primary category, but
the reversed case does not hold. Under these assumptions, we adapted the expectation-maximization algorithm
to estimate the parameters for the proposed Markov chain choice model and formulated a linear program to solve
for an optimal assortment. The numerical experiments demonstrate that there is about 1% to 5% improvement in
revenue by the proposed model compared with the benchmark, the Markov chain choice model for independent
choice across different categories.

1 Introduction

Revenue management is the subject for commercials how to make better decision to improve their revenue. As-
sortment, the collection of products offered to customers, is one of the decisions a commercial need to take into
consideration. To find an assortment, customers’ choices play an important role since these choices determine
the demand of each product. Given different collections of offered products, customers make different purchase
decisions so the total revenue will be very different under different assortments. The problem of finding an opti-
mal assortment attracts more and more researchers and many models are developed. We care about models for
customer choice behavior, how to fit the model from observed sales records, and the assortment optimization for-
mulation under the proposed model. There are already plentiful constructive results and progresses in assortment
optimization, which will be discussed in the later section.

In this research, we focus on the multi-category products and assume that there is choice correlation not only
within each category, but also between multiple categories. For the simplest two-category case, we study a cross-
selling effect between these two categories called asymmetric effect, where these two categories are characterized
by a primary category and a secondary category. This asymmetric cross-selling effect is that when a customer
makes a decision purchasing or not among the primary category products, he or she may consider a product
of the secondary category, but this process cannot happen reversely. It is unlikely that the secondary category
products have significant effect on the primary category products such that a customer move the willingness to
purchase from the secondary category to the primary category. One example is the spaghetti and spaghetti sauce
mentioned above, and another example is the phone and phone case. It is reasonable that one arrives for a new
phone and then have interest in a new phone case, but the reverse case makes no sense.

We build models to study how customers select their preferred products and make purchase decisions on
products of two different categories under this asymmetric cross-selling setting. Since we are considering the path
of a customers decision-making, we can treat it as a Markov chain with the assumption of the Markov property in
transition of interests. Therefore, the choice model is based on the Markov chain choice model.
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1.1 Literature Review

Chong et al. (2001) suggests that customers will form a order of products based on various features. When the
highest priority product is not offered, the second priority product will play a role of substitution. The Markov
chain choice model for one category products is proposed by Blanchet et al. (2016). They show that many popular
customer choice models can be exactly expressed by the Markov chain choice model so that Markov chain choice
model can be generalized in many business settings. Also, they show that the assortment optimization under
Markov chain choice model can be solved efficiently by providing a polynomial-time algorithm to find the optimal
assortment exactly. Desir et al. (2015) study constrained assortment optimization problems subject to capacity
constraints under the Markov chain choice model. Markov chain choice model is a flexible model and widely
used in assortment optimization.

The expectation-maximization algorithm is first proposed by Dempster et al. (1977), which is designed to deal
with the incomplete log-likelihood due to missing data and estimate the parameters by maximizing a carefully
constructed complete log-likelihood. The estimated parameters from the complete log-likelihood are guaranteed
to converge to a local maximum of the incomplete log-likelihood function when some regularity conditions are
satisfied, which is proved by Wu (1983) and Nettleton (1999). Simsek and Topaloglu (2018) use the expectation-
maximization algorithm to estimate the parameters in this Markov chain choice model.

On the other hand, when it comes to the multi-category case, things become complicated. The asymmetric
cross-selling effect was discussed by Walters (1991) with the example of spaghetti and spaghetti sauce. However,
the choice models under this asymmetric cross-selling effect and corresponding optimization formulations are not
well-studied. Ghoniem et al. (2016) studied the assortment and price optimization under this asymmetric cross-
selling effects a maximum-surplus choice model. However, this model is based on strong assumption on the price
of products, which cannot solve for general multi-category assortment optimization problems. Therefore, it is a
natural idea to use the Markov chain choice model for the customers’ choices and assortment optimization.

1.2 Main Contributions

We extend the Markov chain choice model for the multi-category assortment optimization problems. We adapt
the expectation-maximization algorithm to estimate the parameters. We also formulate a linear program to solve
for the optimal assortment. Furthermore, after we figure out the Markov chain choice model for a two-category
system with this asymmetric cross-selling effect, it is reasonable that we can use this asymmetric cross-selling
effect to construct a hierarchical structure of products and formulate a larger Markov chain choice model for it.
For example, in an electronic store, we can find plentiful such effects, including monitors and Nintendo Switch
consoles, consoles and games, and consoles and corresponding accessories. Then we have a hierarchical structure.

1.3 Outline

In section 2, we describe how the Markov chain choice model is built for the multi-category products setting.
Also, the common notations in this article will be defined in this section. In section 3, we derive the expectation-
maximization algorithm to estimate the parameters in this multi-category Markov chain choice model and provide
the proof for the convergence of the proposed expectation-maximization algorithm. In section 4, we formulate a
linear program for assortment optimization under the proposed multi-category Markov chain choice model and
prove the optimality of the solution. In section 5, we present the numerical experiments to show the performance
of our model. In section 6, we discuss our ongoing work, a further assortment optimization formulation by robust
optimization.

2 Model Formulation

Denote two categories M and N , where category M is the primary and purchase interest in category M can
spark purchase interest in the secondary category N . There are |M | products in category M , denoted by product
m1,m2, · · · ,m|M |. Similarly, there are |N | products in category N , denoted by product n1, n2, · · · , n|N |. The no
purchase options in the two categories are denoted by m0 and n0 and the categories with no purchase option are
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denoted by M+ and N+. From these two categories, collections SM and SN are offered. Then not offered sets are
denoted by S̄M and S̄N . When the full set of category M is offered, the vector of probabilities that a customer
arrives with purchase willingness on each product in category M is denoted by ΛM , and each probability of
interest in product mj is denoted by λmj

∀mj ∈ M+. We have the similar notation ΛN and λnj
∀nj ∈ N+ for

category N . Then we denote the transition probability by a transition matrices PM and PN by

PM =


ρm0m0

ρm0m1
· · · ρm0m|M|

ρm1m0
ρm1m1

· · · ρm1m|M|
...

...
. . .

...
ρm|M|m0

ρm|M|m1
· · · ρm|M|m|M|

 and PN =


ρn0n0

ρn0n1
· · · ρn0n|N|

ρn1n0
ρn1n1

· · · ρn1n|N|
...

...
. . .

...
ρn|N|n0

ρn|N|n1
· · · ρn|N|n|N|

 .
In this matrix, the probability of interest transition from productmi to productmj is given by ρmimj

in the primary
category and that from product ni to product nj is given by ρninj

in the secondary category. Also, we denote the
”spark” possibility of product mj in the secondary category by product nj in the primary category by σmjnj .
Therefore, we can also construct a spark matrix S by

S =


σm0n0

σm0n1
· · · σm0n|N|

σm1n0 σm1n1 · · · σm1n|N|
...

...
. . .

...
σm|M|n0 σm|M|n1 · · · σm|M|n|N|


According to our definition of primary category and secondary category, we do not allow purchase interest in
product mj ∈M+ sparked by product nj ∈ N+. Therefore, the purchase interest in category M products can only
be transferred within category M and cannot be sparked by purchase decision in category N . We can keep using
the Markov chain choice model for one category proposed by Blanchet et al. (2016). We denote the probability that
a customer in this two-category system with SM offered considers product mj by

φmj
(SM ) = λmj

+
∑

mi∈S̄M

ρmimj
φmi

(SM ) , ∀mj ∈M+.

The probability of considering each product in category M can be obtained by solving a system of linear equation.
Define ΦS̄M

(SM ) =
{
φmj (SM ) | mj ∈ S̄M

}
, ΛS̄M

=
{
λmj | mj ∈ S̄M

}
, and PS̄M

=
{
ρmimj | mi,mj ∈ S̄M

}
. Then

we have a system of linear equations
(
I−PS̄M

)T
ΦS̄M

(SM ) = ΛS̄M
. According to Puterman (1994, corollary

C.4), if the probability of interest transition ρmimj > 0 ∀mi,mj ∈ M+ is satisfied, then
(
I−PS̄M

)−1 exists for any
assortment SM . Therefore, we always have the solution for the system of linear equations by

ΦS̄M
(SM ) =

(
I−PS̄M

)−T
ΛS̄M

.

With this solution, we can easily calculate the probability of visiting each product in category M . Then we want
to determine the probability of visiting product nj , which needs to be discussed in two cases. When a customer
only wants to purchase a product from category N products, we just treat it as the single-category case. When a
customer is initially interested in category M products and then interested in category N products, this sparked
interest depends on the previous purchase decision on category M products, so we need to consider a conditional
probability φnj |mk

(SM , SN ) that a customer in this two-category system with SM and SN offered considers prod-
uct nj given a purchase decision on product mj . For secondary category N , the initial purchase interest in product
nj is sparked by a purchase decision of product mj in category M with probability λnj |mj

= σmjnj
. We consider

the purchase interests transferred within category N with the assumption that the transition of interests among
the second category products is correlated to the purchase decision in the primary category. This assumption
makes sense in many business settings. For example, when a customer bought a set of suit and considered to buy
a pair of leather shoes then, he might be more likely to buy a pair of shoes matching his suit. Therefore, he might
narrow down the choice of colors and styles. To address with this correlation, we denote the purchase interests
transferred from product ni to product nj in category N conditioned on the purchase decision on product mj in
category M with probability ρninj |mj

φni|mj
(SM , SN ) and the transition matrix in the category N by PN |mj

for
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each purchase decision on product mj in category M . Therefore, we consider all the probability that a customer in
this two-category system with SM and SN offered considers product nj given a purchase decision on product mj

by
φnj |mj

(SM , SN ) = σmjnj
+
∑
ni∈S̄N

ρninj |mj
φni|mj

(SM , SN ) , ∀nj ∈ N+.

Then each conditional probability above can be calculated by solving a system of linear equations. We define
ΦS̄N |mj

(SM , SN ) =
{
φnj |mj

(SM , SN ) | nj ∈ S̄N
}

and Smj S̄N
=
{
σmjnj

| nj ∈ S̄N
}

. If the probability of interest

transition ρninj |mj
> 0 ∀ni, nj ∈ N+ is satisfied, then

(
I−PS̄N |mj

)−1

exists for any assortment SM and SN . So
we have the solution by

ΦS̄N |mj
(SM , SN ) =

(
I−PS̄N |mj

)−T

ST
mj S̄N

.

When we have each conditional probability, we can easily calculate the joint probability φmjnj
(SM , SN ) that a

customer considers any product combination of mj and nj when SM and SN are offered. Define a collection of
conditional transition matrices within category N that PN |M =

{
PN |mj

| mj ∈M+

}
. Since we easily see that we

can obtain all the information in this model after we know the parameters ΛM , PM , PN |M and S, the next question
is how to estimate these parameters. This will be used to calculate the likelihood of parameters and all the detailed
procedures will be explained in detail in the next section.

3 Parameter Estimation

To further optimize the assortment selection, we need to estimate the parameters in the proposed Markov chain
choice model. We will utilize the expectation-maximization based estimation method proposed by Simsek and
Topaloglu (2018) and extend the model to the multi-category case. Denote customer t’s purchase decision on
category M products under assortment SM by random variable ZM

(
S

(t)
M

)
that

ZM

(
S

(t)
M

)
=
(
Zm0

(
S

(t)
M

)
, Zm1

(
S

(t)
M

)
, . . . , Zm|M|

(
S

(t)
M

))
∈
{
em0

, em1
, . . . , em|M|

}
,

where emj
∈ {0, 1}|M |+1 and only the entry corresponding to productmj is 1. When customer t purchases product

mj under assortment SM , we have Zmj

(
S

(t)
M

)
= 1 and Zmi

(
S

(t)
M

)
= 0 ∀mi ∈ M+\ {mj}. Therefore, we have

ZM

(
S

(t)
M

)
= emj . Moreover, we know that P

{
ZM

(
S

(t)
M

)
= emj

}
= φmj

(
S

(t)
M

)
for any offered product mj ∈ SM .

Similarly, denote customer t’s purchase decision on category N products given the purchase decision in category
M under assortment SM and SN by ZN |M

(
S

(t)
M , S

(t)
N

)
that

ZN |M

(
S

(t)
M , S

(t)
N

)
=


Zn0|m0

(
S

(t)
M , S

(t)
N

)
Zn1|m0

(
S

(t)
M , S

(t)
N

)
· · · Zn|N||m0

(
S

(t)
M , S

(t)
N

)
Zn0|m1

(
S

(t)
M , S

(t)
N

)
Zn1|m1

(
S

(t)
M , S

(t)
N

)
· · · Zn|N||m1

(
S

(t)
M , S

(t)
N

)
...

...
. . .

...
Zn0|m|M|

(
S

(t)
M , S

(t)
N

)
Zn1|m|M|

(
S

(t)
M , S

(t)
N

)
· · · Zn|N||m|M|

(
S

(t)
M , S

(t)
N

)

 .

Now we can define the row of ZN |M

(
S

(t)
M , S

(t)
N

)
corresponding to the given purchase decision on the product mj

by ZN |mj

(
S

(t)
M , S

(t)
N

)
∈
{
en0

, en1
, . . . , en|N|

}
, where enj

∈ {0, 1}|N |+1 and only the entry corresponding to prod-
uct nj is 1. When customer t purchases product nj under assortment SM and SN given the previous purchase

decision on product mj , we have Znj |mj

(
S

(t)
M , S

(t)
N

)
= 1 and Zni|mj

(
S

(t)
M , S

(t)
N

)
= 0 ∀ni ∈ N+\ {nj}. Therefore,

we have ZN |mj

(
S

(t)
M , S

(t)
N

)
= enj

. Moreover, we know that P
{

ZN |mj

(
S

(t)
M , S

(t)
N

)
= enj

}
= φnj |mj

(
S

(t)
M , S

(t)
N

)
for any offered product nj ∈ SN . From empirical data, we have the assortment Ŝ(t)

M and S
(t)
N for each cus-

tomer t. Also, for each pair of assortment, we have the customer t’s purchase decision Ẑ
(t)
M ∼ ZM

(
S

(t)
M

)
and
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Ẑ
(t)
N |mj

∼ ZN |mj

(
S

(t)
M , S

(t)
N

)
. Denote the parameters

(
ΛM ,PM ,PN |M ,S

)
by W. Therefore, we can write a likeli-

hood function for customer t’s purchase decision by

L(t) (W) =
∏

mj∈M+

φmj

(
Ŝ

(t)
M | ΛM ,PM

) ∏
nj∈N+

φnj |mj

(
Ŝ

(t)
M , Ŝ

(t)
N |W

)Ẑ(t)

nj |mj

Ẑ
(t)
mj

.

We can consider the likelihood of the purchase decisions all the customers by L (W) =
∏
t∈T L

(t) (W). Then we

have the log-likelihood for empirical data
{(
Ŝ

(t)
M , Ŝ

(t)
N , Ẑ

(t)
M , Ẑ

(t)
N |mj

)
| t ∈ T

}
by l (W) =

∑
t∈T l

(t) (W), where

l(t) (W) =
∑

mj∈M+

Z(t)
mj

log φmj

(
Ŝ

(t)
M | ΛM ,PM

)
+
∑

nj∈N+

Z
(t)
nj |mj

log φnj |mj

(
Ŝ

(t)
M , Ŝ

(t)
N |W

) .
We know that the optimal feasible parameters that fit the given data maximize this log-likelihood function. There-
fore, to estimate the parameters, we can formulate and solve an optimization problem that

max
W

l (W)

s.t.
∑

mj∈M+

λmj
= 1,

∑
mj∈M+

ρmimj = 1 ∀mi ∈M+,∑
nj∈N+

ρninj |mj
= 1 ∀mj ∈M+, ni ∈ N+,∑

nj∈N+

σmjnj = 1 ∀mj ∈M+.

(1)

However, according to Simsek and Topaloglu (2018), this optimization problem is hard to solve since there is no
closed-form expression for φmj

(
Ŝ

(t)
M | ΛM ,PM

)
and φnj |mj

(W). This difficulty motivates to use an expectation-
maximization algorithm.

3.1 Overview of Expectation-Maximization Algorithm

The general idea of an expectation-maximization algorithm is that we initialize the required parameters and up-
date them iteratively through an expectation step and a maximization step. We need to define some new random
variables to construct a new log-likelihood function, estimate the expectation of the new random variables condi-
tioned on previous estimated parameters, and then update the parameters by maximizing the new log-likelihood
function. We define the initial interest in category M products to be our first new random variable. We denote this
random variable by

FM =
(
Fm0

, Fm1
, . . . , Fm|M|

)
∈
{
em0

, em1
, . . . , em|M|

}
.

When customer t enters into the system with initial interest in product mj , we have Fmj
= 1 and Fmi

=
0 ∀mi ∈ M+\ {mj}. Therefore, we have FM = emj . Moreover, by the definition of initial interest we have
that P

{
FM = emj

}
= λmj . Then we define the interest transition of customer t within category M products under

assortment SM by

GM

(
S

(t)
M

)
=


Gm0m0

(
S

(t)
M

)
Gm0m1

(
S

(t)
M

)
· · · Gm0m|M|

(
S

(t)
M

)
Gm1m0

(
S

(t)
M

)
Gm1m1

(
S

(t)
M

)
· · · Gm1m|M|

(
S

(t)
M

)
...

...
. . .

...
Gm|M|m0

(
S

(t)
M

)
Gm|M|m1

(
S

(t)
M

)
· · · Gm|M|m|M|

(
S

(t)
M

)

 .
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Since for each product mi, the purchase interest must transfer and can only transfer to another product mj , we

denote the row of GM

(
S

(t)
M

)
by Gmi

(
S

(t)
M

)
corresponding to the purchase interest transferred from product mi.

When customer t transfer his purchase interest from product mi to product mj with probability gmimj
, we have

that P
{

Gmi

(
S

(t)
M

)
= emj

}
= gmimj . We define a collection of random variables

{
Gmi

(
S

(t)
M

)
| mi ∈M+

}
. Simi-

larly, we can define the interest transition of customer t within category N products conditioned on the purchase
decision on product mj under assortment SM and SN by GN |mj

(
S

(t)
M , S

(t)
N

)
. Also, the row of GN |mj

(
S

(t)
M , S

(t)
N

)
corresponding to the purchase interest transferred from product ni is denoted by Gni|mj

(
S

(t)
M , S

(t)
N

)
. We need to

be careful that only when product mj is offered, we have that Gni|mj

(
S

(t)
M , S

(t)
N

)
∈
{
en0

, en1
, . . . , en|N|

}
. When

product mj is not offered, the transition from product mj to any product nj is not a feasible path in this Markov

chain choice model. Therefore, we have that Gni|mj

(
S

(t)
M , S

(t)
N

)
does not exist. To eliminate this infeasibility and

keep the format, we can set P
{

Gni|mj

(
S

(t)
M , S

(t)
N

)
= 0

}
= 1 ∀mj ∈ S̄M . We define a collection of random vari-

ables
{

Gni|mj

(
S

(t)
M , S

(t)
N

)
| mj ∈M+, ni ∈ N+

}
. Finally, we need to consider the purchase interest in category N

products sparked by category M products. We define customer t’s interest in category N products sparked by
category M products under assortment SM by

HM

(
S

(t)
M

)
=


Hm0n0

(
S

(t)
M

)
Hm0n1

(
S

(t)
M

)
· · · Hm0n|N|

(
S

(t)
M

)
Hm1n0

(
S

(t)
M

)
Hm1n1

(
S

(t)
M

)
· · · Hm1n|N|

(
S

(t)
M

)
...

...
. . .

...
Hm|M|n0

(
S

(t)
M

)
Hm|M|n1

(
S

(t)
M

)
· · · Hm|M|n|N|

(
S

(t)
M

)

 .

According to the assumption, the purchase decision on category M product mj sparks the purchase interest in a

category N product nj . Similar to the transition matrix GN |mj

(
S

(t)
M , S

(t)
N

)
, we need to be careful that the sparked

interest happens only when a purchase decision is made. Therefore, we denote the row of HM

(
S

(t)
M

)
correspond-

ing to the purchase interest sparked by any product mj ∈ S
(t)
M by Hmj

(
S

(t)
M

)
∈
{
en0

, en1
, . . . , en|N|

}
. When

customer t’s purchase interest in product nj is sparked by his purchase decision on product mj with probability

hmjnj , we have that P
{

Hmj

(
S

(t)
M

)
= enj

}
= hmjnj . When product mj is not offered, Hmjnj

(
S

(t)
M

)
does not exist

so that we can set P
{

Hmj

(
S

(t)
M

)
= 0

}
= 1 ∀mj ∈ S̄M for feasibility. Similarly, we still define a collection of

random variables
{

Hmj

(
S

(t)
M

)
| mj ∈M+

}
. Till now, we have all the random variables to construct a different

likelihood function. If we have empirical data
{
Ŝ

(t)
M , Ŝ

(t)
N , Ẑ

(t)
M , Ẑ

(t)
N |M , F̂

(t)
M , Ĝ

(t)
M , Ĝ

(t)
N |M , Ĥ

(t)
M | t ∈ T

}
, we have a

likelihood function for customer t’s path in this Markov chain choice model by

L
(t)
P (W) =

∏
mj∈M+

λ
F̂ (t)

mj
mj

∏
mi,mj∈M+

ρ
Ĝ(t)

mimj
mimj

∏
mj∈M+

nj∈N+

σ
Ĥ(t)

mjnj
mjnj

∏
mj∈M+

ni,nj∈N+

ρ
Ĝ

(t)

ninj |mj

ninj |mj
.

We can consider the likelihood of the paths all the customers by LP (W) =
∏
t∈T L

(t)
P (W). Then we have the

log-likelihood function for empirical data
{
Ŝ

(t)
M , Ŝ

(t)
N , Ẑ

(t)
M , Ẑ

(t)
N |mj

, F̂
(t)
M , Ĝ

(t)
M , Ĝ

(t)
N |M , Ĥ

(t)
M | t ∈ T

}
that

l
(t)
P (W) =

∑
mj∈M+

F̂ (t)
mj

log λmj +
∑

mi,mj∈M+

Ĝ(t)
mimj

log ρmimj

+
∑

mj∈M+

nj∈N+

Ĥ(t)
mjnj

log σmjnj
+

∑
mj∈M+

ni,nj∈N+

Ĝ
(t)
ninj |mj

log ρninj |mj
.

6



Similar to the maximization problem (1), the optimal feasible parameters that fit the given data maximize this log-
likelihood function. Therefore, to estimate the parameters, we can formulate and solve an optimization problem
that

max
W

lP (W)

s.t.
∑

mj∈M+

λmj
= 1,

∑
mj∈M+

ρmimj = 1 ∀mi ∈M+,∑
nj∈N+

ρninj |mj
= 1 ∀mj ∈M+, ni ∈ N+,∑

nj∈N+

σmjnj
= 1 ∀mj ∈M+.

(2)

However, since we do not have access to data
{

F̂
(t)
M , Ĝ

(t)
M , Ĝ

(t)
N |M , Ĥ

(t)
M | t ∈ T

}
, we can solve this problem itera-

tively by an expectation-maximization algorithm: we calculate the conditional expectation of these random vari-
ables with previous obtained parameters, solve the optimization problem with then estimated data, then update
parameters and repeat this process until the parameters converge.

3.2 Conditional Expectation of Desired Random Variables

The expectation-maximization algorithm solves problem iteratively. In each iteration, we have an expectation step
and a maximization step. We discuss the expectation step first. In the very beginning, we initialize the parameters
to be W(1) =

(
Λ

(1)
M ,P

(1)
M ,P

(1)
N |M ,S

(1)
)

and in each iteration l, we use W(l) =
(
Λ

(l)
M ,P

(l)
M ,P

(l)
N |M ,S

(l)
)

to estimate

the conditional expectation
{

F̂
(t)
M , Ĝ

(t)
M , Ĝ

(t)
N |M , Ĥ

(t)
M | t ∈ T

}
by

F̂ (t,l)
mj

= E
[
Fmj

| ZM
(
Ŝ

(t)
M

)
= Ẑ

(t)
M ,W(l)

]
,

Ĝ(t,l)
mimj

= E
[
Gmimj

(
Ŝ

(t)
M

)
| ZM

(
Ŝ

(t)
M

)
= Ẑ

(t)
M ,W(l)

]
,

Ĝ
(t,l)
ninj |mj

= E
[
Gninj |mj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
| ZM

(
Ŝ

(t)
M

)
= Ẑ

(t)
M ,ZN |mj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= Ẑ

(t)
N |mj

,W(l)
]
,

Ĥ(t,l)
mjnj

= E
[
Hmjnj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
| ZM

(
Ŝ

(t)
M

)
= Ẑ

(t)
M ,ZN |mj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= Ẑ

(t)
N |mj

,W(l)
]
.

For convenience, we assume that ZM

(
Ŝ

(t)
M

)
= Ẑ

(t)
M = emk

for some mk ∈ ŜM and ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= Ẑ

(t)
N |mk

=

enk
for some nk ∈ ŜN .

3.2.1 Estimation of
{

F̂
(t)
M | t ∈ T

}
For binary variable Fmj

, we have E
[
Fmj

]
= P

{
Fmj

= 1
}

. Therefore, we can rewrite the conditional expectation
and apply the Bayes theorem to have

F̂ (t,l)
mj

= E
[
Fmj | ZM

(
Ŝ

(t)
M

)
= Ẑ

(t)
M ,W(l)

]
= P

{
Fmj = 1 | ZM

(
Ŝ

(t)
M

)
= emk

,W(l)
}

=
P
{

ZM

(
Ŝ

(t)
M

)
= emk

| Fmj = 1,W(l)
}
P
{
Fmj = 1 |W(l)

}
P
{

ZM

(
Ŝ

(t)
M

)
= emk

|W(l)
} .
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From our model setup, we have that P
{

ZM

(
Ŝ

(t)
M

)
= emk

|W(l)
}

= φmk

(
Ŝ

(t)
M |W(l)

)
, which can be obtained by

solving a system of linear equations. Also, by the definition of FM , we have P
{
Fmj

= 1 |W(l)
}

= λ
(l)
mj . We can

observe that when mj is offered, customer t will purchase product mj if he arrives into the system first visiting
product mj . Therefore, when we have assortment ŜM for customer t such that mj ∈ ŜM , we can conclude that

P
{

ZM

(
Ŝ

(t)
M

)
= emk

| Fmj = 1,W(l)
}

= Imj=mk
, where Imj=mk

= 1 if mj = mk and Imj=mk
= 0 if mj 6= mk.

When product mj is not offered, we can calculate this probability by solving a system of linear equations. We
still use the idea that the purchase decision on product mk can be made when the customer changes his deci-
sion from product mi not in assortment ŜM to product mk. So we define a new variable θmk

(
SM | F̂(t)

M ,W(l)
)

=

P
{

ZM (SM ) = emk
| FM = F̂

(t)
M ,W(l)

}
for the probability that customer t visits product mk given a previous vis-

iting on product mj . For any not offered product mk ∈ ¯̂
S

(t)
M , we have that

θmk

(
Ŝ

(t)
M | emj ,W

(l)
)

= ρmjmk
+

∑
mi∈ ¯̂

S
(t)
M

ρmimk
θmi

(
Ŝ

(t)
M | emj ,W

(l)
)
.

We use ΘS̄M

(
Ŝ

(t)
M | emj

,W(l)
)

=
{
θmi

(
Ŝ

(t)
M | emj

,W(l)
)
| mi,mj ∈ ¯̂

S
(t)
M

}
to denote the vector of such probabili-

ties for not offered products in categoryM . We also define the transition matrix of not offered products in category
M by PS̄M

and the transition vector from product mj to the not offered products by Pmj S̄M
. Now we have the

solution of the system of linear equations above by ΘS̄M

(
Ŝ

(t)
M | emj

,W(l)
)

=
(
I−PS̄M

)−T
Pmj S̄M

. Then we can

plug the solution into F̂ (t,l)
mj and have that

F̂ (t,l)
mj

=
θmk

(
Ŝ

(t)
M | emj ,W

(l)
)
λ

(l)
mj

φmk

(
Ŝ

(t)
M |W(l)

) .

3.2.2 Estimation of
{

Ĝ
(t)
M | t ∈ T

}
In an infinite-horizon Markov chain, any transition from product mi to product mj can be expressed as an event
that customer t visits product mi in stage r and product mj i stage r + 1 for some r ∈ Z+. We define a binary

variable V rmj

(
S

(t)
M

)
= 1 if customer t visits product mj in stage r given assortment SM . Otherwise, we have

V rmj

(
S

(t)
M

)
= 0. Therefore, we can define a collection of random variables by

{
Vr
M

(
S

(t)
M

)
| r ∈ Z+

}
, where

Vr
M

(
S

(t)
M

)
=
(
V rm0

(
S

(t)
M

)
, V rm1

(
S

(t)
M

)
, . . . , V rm|M|

(
S

(t)
M

))
∈
{
em0 , em1 , . . . , em|M|

}
.

For binary variable Gmimj

(
Ŝ

(t)
M

)
, we have E

[
Gmimj

(
Ŝ

(t)
M

)]
=
∑∞
r=1 P

{
V rmi

(
Ŝ

(t)
M

)
= V r+1

mj

(
Ŝ

(t)
M

)
= 1
}

. Then

we can rewrite Ĝ(t,l)
mimj by

Ĝ(t,l)
mimj

= E
[
Gmimj

(
Ŝ

(t)
M

)
| ZM

(
Ŝ

(t)
M

)
= Ẑ

(t)
M ,W(l)

]
=

∞∑
r=1

P
{
V rmi

(
Ŝ

(t)
M

)
= V r+1

mj

(
Ŝ

(t)
M

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

,W(l)
}
.

To further simplify the expression of Ĝ(t,l)
mimj , we can put the event V rmi

(
Ŝ

(t)
M

)
= 1 to the conditional part so that

we can use the transition parameter PM in this expression. We apply the definition of conditional probability and
have that

Ĝ(t,l)
mimj

=

∞∑
r=1

P
{
V r+1
mj

(
Ŝ

(t)
M

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

, V rmi

(
Ŝ

(t)
M

)
= 1,W(l)

}
×P
{
V rmi

(
Ŝ

(t)
M

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

,W(l)
}
.
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Then we use the Bayes theorem to calculate the two probabilities above respectively. For the first probability, we
have that

P
{
V r+1
mj

(
Ŝ

(t)
M

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

, V rmi

(
Ŝ

(t)
M

)
= 1,W(l)

}
=
P
{

ZM

(
Ŝ

(t)
M

)
= emk

| V r+1
mj

(
Ŝ

(t)
M

)
= V rmi

(
Ŝ

(t)
M

)
= 1,W(l)

}
P
{
V r+1
mj

(
Ŝ

(t)
M

)
= 1 | V rmi

(
Ŝ

(t)
M

)
= 1,W(l)

}
P
{

ZM

(
Ŝ

(t)
M

)
= emk

| V rmi

(
Ŝ

(t)
M

)
= 1,W(l)

} .

By the definition of purchase interest transition, we can easily see that P
{
V r+1
mj

(
Ŝ

(t)
M

)
= 1 | V rmi

(
Ŝ

(t)
M

)
= 1,W(l)

}
=

ρ
(l)
mimj . Since we are dealing with an infinite-horizon Markov chain model, that customer t purchases product mk

conditioned on a previous visit to product mj in stage r or r + 1 has no difference with that customer t purchases
product mk conditioned on visiting product mj in the first stage. Therefore, we can keep using the same defined
variables and solving the same system of linear equations as what we do previous section. We have that

P
{
V r+1
mj

(
Ŝ

(t)
M

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

, V rmi

(
Ŝ

(t)
M

)
= 1,W(l)

}
=
θmk

(
Ŝ

(t)
M | emj

,W(l)
)
ρ

(l)
mimj

θmk

(
Ŝ

(t)
M | emi

,W(l)
) .

Then we want to calculate P
{
V rmi

(
Ŝ

(t)
M

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

,W(l)
}

. We still use Bayes theorem to rewrite it
by

P
{
V rmi

(
Ŝ

(t)
M

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

,W(l)
}

=
P
{

ZM

(
Ŝ

(t)
M

)
= emk

| V rmi

(
Ŝ

(t)
M

)
= 1,W(l)

}
P
{
V rmi

(
Ŝ

(t)
M

)
= 1 |W(l)

}
P
{

ZM

(
Ŝ

(t)
M

)
= emk

|W(l)
}

=
θmk

(
Ŝ

(t)
M | emi

,W(l)
)
P
{
V rmi

(
Ŝ

(t)
M

)
= 1 |W(l)

}
φmk

(
Ŝ

(t)
M |W(l)

) .

Therefore, we can use these results to determine Ĝ(t,l)
mimj by

Ĝ(t,l)
mimj

=

∞∑
r=1

θmk

(
Ŝ

(t)
M | emj

,W(l)
)
ρ

(l)
mimj

φmk

(
Ŝ

(t)
M |W(l)

) P
{
V rmi

(
Ŝ

(t)
M

)
= 1 |W(l)

}

=
θmk

(
Ŝ

(t)
M | emj

,W(l)
)
ρ

(l)
mimj

φmk

(
Ŝ

(t)
M |W(l)

) ∞∑
r=1

P
{
V rmi

(
Ŝ

(t)
M

)
= 1 |W(l)

}
.

We know that the probability that customer t visits productmj is equal to sum of the probability that he visits prod-

uct mj in every stage. According to the definition of V rmi

(
Ŝ

(t)
M

)
, we know that

∑∞
r=1 P

{
V rmi

(
Ŝ

(t)
M

)
= 1 |W(l)

}
=

φmi

(
Ŝ

(t)
M |W(l)

)
. In conclusion, we have the expression for Ĝ(t,l)

mimj that

Ĝ(t,l)
mimj

= θmk

(
Ŝ

(t)
M | emj

,W(l)
)
ρ(l)
mimj

φmi

(
Ŝ

(t)
M |W(l)

)
φmk

(
Ŝ

(t)
M |W(l)

) .
3.2.3 Estimation of

{
Ĝ

(t)
N |M | t ∈ T

}
According to our model, both the initial interests and transition interests in category N products both depends
on the purchase decision of category M products. Therefore, when we estimate the transition interest within
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category N products, we follow the same procedure as estimating category M products, but we need to consider
the conditional probability given a purchase decision Ẑ

(t)
M = emk

. Thus, we adapt the previously defined variable

θmk

(
SM | F̂(t)

M ,W(l)
)

to be θnk|mk

(
SM , SN | Ĥ(t)

mk ,W
(l)
)

= P
{

ZN (SM , SN ) = enk
| Hmk

= Ĥ
(t)
mk ,W

(l)
}

for the
probability that customer t visits product nk given a previous visiting on product nj and a purchase decision on
product mk. For any not offered product ni ∈ ¯̂

S
(t)
N , we have that

θnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N | enj

,W(l)
)

= ρnjnk|mk
+

∑
ni∈ ¯̂

S
(t)
N

ρnink|mk
θni|mk

(
Ŝ

(t)
M , Ŝ

(t)
N | enj

,W(l)
)
.

Similar to the previous sections, we have that ΘS̄N|mk

(
Ŝ

(t)
M , Ŝ

(t)
N | emj ,W

(l)
)

=
(
I−PS̄N |mk

)−T
Pnj S̄N |mk

, where
Pnj S̄N |mk

is the row of transition matrix PN |mk
from product nj to all the not offered products, is the solution for

the system of linear equations above. Also, we use the conditional probability of visiting product nj given the
purchase decision on mk instead of the unconditional probability. Then we just use the same method but replace
all the unconditional probability by the corresponding conditional version and calculate Ĝ(t,l)

ninj |mk
by

Ĝ
(t,l)
ninj |mk

= θnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N | enj

,W(l)
)
ρ

(l)
ninj |mk

φni|mk

(
Ŝ

(t)
M , Ŝ

(t)
N |W(l)

)
φnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N |W(l)

) .
Last but not least, it is very natural to set ĜN |mk′

= 0 for any k′ 6= k.

3.2.4 Estimation of
{

Ĥ
(t)
M | t ∈ T

}
Now we need to consider the conditional expectation of customer t’s interest in category N products sparked by
product mj given that he eventually purchases product mk and product nk. Similar to the previous section, we

still define a binary variable V rnj

(
S

(t)
M , S

(t)
N

)
= 1 if customer t visits product nj in stage r given assortment SM

and SN . Otherwise, V rnj

(
S

(t)
M , S

(t)
N

)
= 0. This time we need to consider that customer t visits product mj in stage

r and product nj in stage r + 1. We can see that stage r is the last stage customer t visits category M products.
So, it is infeasible when product mj is not the purchase decision of customer t among category M products. We

can set that Ĥ(t)
mjnj = 0 ∀mj 6= mk and only calculate Ĥ(t,l)

mknj . For binary variable Hmknj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
, we have

E
[
Hmknj

(
Ŝ

(t)
M , Ŝ

(t)
N

)]
=
∑∞
r=1 P

{
V rmk

(
Ŝ

(t)
M

)
= V r+1

nj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= 1
}

. Then we can rewrite Ĥ(t,l)
mjnj by

Ĥ(t,l)
mknj

= E
[
Hmknj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
| ZM

(
Ŝ

(t)
M

)
= Ẑ

(t)
M ,ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= Ẑ

(t)
N |mk

,W(l)
]

=

∞∑
r=1

P
{
V rmk

(
Ŝ

(t)
M

)
= V r+1

nj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

,ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= enk

,W(l)
}
.

We follow the same idea to move the event V rmk

(
Ŝ

(t)
M

)
= 1 to the conditional part and use the definition of

conditional probability to rewrite Ĥ(t,l)
mknj by

Ĥ(t,l)
mknj

=

∞∑
r=1

P
{
V r+1
nj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

,ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= enk

, V rmk

(
Ŝ

(t)
M

)
= 1,W(l)

}
×P
{
V rmk

(
Ŝ

(t)
M

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

,ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= enk

,W(l)
}
.
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We calculate both of the two probabilities in the formula above by Bayes theorem. We rewrite the first probability
by

P
{
V r+1
nj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

,ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= enk

, V rmk

(
Ŝ

(t)
M

)
= 1,W(l)

}
=P
{

ZM

(
Ŝ

(t)
M

)
= emk

,ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= enk

| V rmk

(
Ŝ

(t)
M

)
= 1, V r+1

nj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= 1,W(l)

}
×

P
{
V r+1
nj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= 1 | V rmk

(
Ŝ

(t)
M

)
= 1,W(l)

}
P
{

ZM

(
Ŝ

(t)
M

)
= emk

,ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= enk

| V rmk

(
Ŝ

(t)
M

)
= 1,W(l)

} .
When we are given V rmk

(
Ŝ

(t)
M

)
= 1, we know that customer t visits product mk and mk is offered according to

the assumption. Therefore, the customer must purchase product mk and the event ZM

(
Ŝ

(t)
M

)
= emk

must happen

given V rmk

(
Ŝ

(t)
M

)
= 1. So, we only need to consider P

{
ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= enk

| V r+1
nj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= 1,W(l)

}
,

which can be obtained by solving a system of linear equations as is demonstrated in the previous section. We keep
the same notation for that by θnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N | enj

,W(l)
)

. By the previous definition of interest spark, we have

that P
{
V r+1
nj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= 1 | V rmk

(
Ŝ

(t)
M

)
= 1,W(l)

}
= σ

(l)
mknj . Also, from our previous definition of probability

of visiting product nj conditioned on purchase decision on product mj under assortment SM and SN , we have

that P
{

ZM

(
Ŝ

(t)
M

)
= emk

,ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= enk

| V rmk

(
Ŝ

(t)
M

)
= 1,W(l)

}
= φnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
. We combine all

these results and have that

P
{
V r+1
nj

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

,ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= enk

, V rmk

(
Ŝ

(t)
M

)
= 1,W(l)

}
=
θnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N | enj

,W(l)
)
σ

(l)
mknj

φnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N

) .

Then we deal with P
{
V rmk

(
Ŝ

(t)
M

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

,ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= enk

,W(l)
}

. Similar to the previous
procedures, we apply Bayes theorem to rewrite this expression by

P
{
V rmk

(
Ŝ

(t)
M

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

,ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= enk

,W(l)
}

=
P
{

ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= enk

| V rmk

(
Ŝ

(t)
M

)
= 1,W(l)

}
P
{
V rmk

(
Ŝ

(t)
M

)
= 1 |W(l)

}
P
{

ZM

(
Ŝ

(t)
M

)
= emk

,ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= enk

|W(l)
} .

From the model setup, we denote the joint probability of purchasing product mj and nj by φminj (SM , SN ) =
φmj

(SM )φnj |mj
(SM , SN ). Therefore, this probability above can be calculated by

P
{
V rmk

(
Ŝ

(t)
M

)
= 1 | ZM

(
Ŝ

(t)
M

)
= emk

,ZN |mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
= enk

,W(l)
}

=
φnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N

)
P
{
V rmk

(
Ŝ

(t)
M

)
= 1 |W(l)

}
φmk

(
Ŝ

(t)
M

)
φnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N

) =
P
{
V rmk

(
Ŝ

(t)
M

)
= 1 |W(l)

}
φmk

(
Ŝ

(t)
M

) .
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The last step is to combine all these results and obtain a simple expression for Ĥ(t,l)
mknj by

Ĥ(t,l)
mknj

=

∞∑
r=1

θnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N | enj

,W(l)
)
σ

(l)
mknj

φmk

(
Ŝ

(t)
M

)
φnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N

) P
{
V rmk

(
Ŝ

(t)
M

)
= 1 |W(l)

}

=
θnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N | enj

,W(l)
)
σ

(l)
mknj

φmk

(
Ŝ

(t)
M

)
φnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N

) ∞∑
r=1

P
{
V rmk

(
Ŝ

(t)
M

)
= 1 |W(l)

}

=
θnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N | enj ,W

(l)
)
σ

(l)
mknj

φmk

(
Ŝ

(t)
M

)
φnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N

) φmk

(
Ŝ

(t)
M

)
=
θnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N | enj ,W

(l)
)
σ

(l)
mknj

φnk|mk

(
Ŝ

(t)
M , Ŝ

(t)
N

) .

Now we finish all the calculations of conditional expectation of desired variables. We will solve the maximization
problem with the estimated data, which will be discussed in the next section.

3.3 Update of Parameters

If we observe the structure of the maximization problem (2), it can be easily decomposed by the decision variables
W = (ΛM ,PM ,PN ,S). We update ΛM first by solving the decomposed problem

max
ΛM

∑
t∈T

∑
mj∈M+

F̂ (t,l)
mj

log λmj

s.t.
∑

mj∈M+

λmj
= 1.

(3)

Proved by Simsek and Topaloglu (2018), This maximization problem has a very simple form and a neat solution
given by

λ(l+1)
mj

=

∑
t∈T F̂

(t,l)
mj∑

t∈T
∑
mk∈M+

F̂
(t,l)
mk

, ∀mj ∈M+.

Similarly, we can solve the other three decomposed maximization problems and update the parameters by

ρ(l+1)
mimj

=

∑
t∈T Ĝ

(t,l)
mimj∑

t∈T
∑
mk∈M+

Ĝ
(t,l)
mimk

ρ
(l+1)
ninj |mj

=

∑
t∈T Ĝ

(t,l)
ninj |mj∑

t∈T
∑
nk∈N+

Ĝ
(t,l)
nink|mj

σ(l+1)
mjnj

=

∑
t∈T Ĥ

(t,l)
mjnj∑

t∈T
∑
nk∈N+

Ĥ
(t,l)
mjnk

, ∀mi,mj ∈M+, ∀ni, nj ∈ N+.

3.4 Convergence of the Proposed Expectation-Maximization Algorithm

We want to show that the sequence of parameters calculated from each iteration
{
W(l) | l ∈ Z+

}
converge to a

local maximum of the likelihood function L (W). We firstly define the space of parameters W = (ΛM ,PM ,PN ,S)
by

Ω =

W |
∑

mj∈M+

λmj
= 1,

∑
mj∈M+

ρmimj
= 1,

∑
nj∈N+

σmjnj
= 1,

∑
nj∈N+

ρninj |mj
= 1, ∀mi,mj ∈M+, ni ∈ N+

 .

Then we can define the set of local maximum by Ω∗ =
{

W∗ | limγ→0+
L((1−γ)W∗+γW)−L(W∗)

γ ≤ 0, ∀W ∈ Ω
}

. The
proof of convergence follows the procedure by Simsek and Topaloglu (2018), but we take the additional parameter
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S into account. Firstly, we need to show that L
(
W(l+1)

)
≥ L

(
W(l)

)
∀l ∈ Z+ so that we know bounded monotone

sequence must converges. Moreover, we need to show that liml→∞W(l) = W∗ ∈ Ω∗ and liml→∞ L
(
W(l)

)
=

L (W∗). These can be guaranteed by satisfying the regularity conditions in Nettleton (1999).

3.4.1 Regularity Condition 1

The first regularity condition is that the likelihood function L (W) is continuous and differentiable on W over
Ω. According to Puterman (1994, corollary C.4), the solution of the system of linear equations ΦS̄M

(SM ) =(
I−PS̄M

)−T
ΛS̄M

always exists. Therefore, the probability of visiting not offered products ΦS̄M
(SM ) is con-

tinuous and differentiable on all the entries involved in this operation. For the offered products, we know that
φmj

(SM ) = λmj
+
∑
mi∈S̄M

ρmimj
φmi

(SM ) ∀mj ∈ SM . Therefore, we can see that ΦM (SM ) is continuous and
differentiable on (ΛM ,PM ). Similarly, ΦN (SM , SN ) is continuous and differentiable on W. The likelihood func-
tion is the product of entries of ΦM (SM ) and ΦN (SM , SN ) so it is continuous and differentiable on W over Ω.

3.4.2 Regularity Condition 2

The second regularity condition is that Ωα = {W ∈ Ω | L (W) ≥ α} is compact ∀α ∈ R. According to Heine–Borel
theorem, a compact set is equivalent to a closed and bounded set over R. By our definition, Ω is closed and
bounded so Ωα ⊆ Ω is bounded. We can prove that Ωα is closed by contradiction. Assume that a sequence
defined by

{
W(l) ∈ Ωα | l ∈ Z+

}
has limit W∗ /∈ Ωα. Since Ω is closed and bounded and Ωα ⊆ Ω, we have that

W∗ ∈ Ω\Ωα. We can find some δ > 0 such that L (W∗) ≤ α − δ < α. Since L (W) is continuous, we can always
find W(l) such that

∣∣L (W∗)− L
(
W(l)

)∣∣ < δ. Therefore, we have that L
(
W(l)

)
< α and W(l) /∈ Ωα, which is a

contradiction. Thus, any sequence
{
W(l) ∈ Ωα | l ∈ Z+

}
has limit W∗ ∈ Ωα so Ωα is compact.

3.4.3 Regularity Condition 3

The third regularity conditon is that the path likelihood function L
(l)
P (W) is continuous on W(l) and W over

Ω ×Ω. We need to show that all the entries of conditional expectation F̂M , ĜM , ĜN , ĤM is continuous on W(l).
We show this continuity by the similar method for regularity condition 1. Since all the solution

Φ
(l)

S̄M

(
SM |W(l)

)
=
(
I−P

(l)

S̄M

)−T

Λ
(l)

S̄M

Φ
(l)

S̄N |M

(
SM , SN |W(l)

)
=
(
I−P

(l)

S̄N

)−T (
S

(l)

MS̄N

)T

Θ
(l)

S̄M

(
SM | emj ,W

(l)
)

=
(
I−PS̄M

)−T
Pmj S̄M

Θ
(l)

S̄N |M

(
SM , SN | emj ,W

(l)
)

=
(
I−PS̄N

)−T
Pnj S̄N |M

of systems of linear equations in each expectation-maximization iteration always exists, we have that all the entries
of Φ

(l)

S̄M

(
SM |W(l)

)
, Φ

(l)

S̄N |M

(
SM , SN |W(l)

)
, Θ

(l)
M

(
S

(t)
M | emj ,W

(l)
)

and Θ
(l)

S̄N |M

(
SM , SN | emj ,W

(l)
)

are contin-

uous on W(l). Since all the entries of conditional expectation F̂M , ĜM , ĜN |M , ĤM is calculated by multiplication
and division among the entries listed above and W(l), they are continuous on W(l). Therefore, we can conclude
that L(l)

P (W) is continuous on W(l) and W over Ω×Ω.

4 Assortment Optimization

4.1 Linear Programming Formulation

After we have the estimation of all the parameters, we want to solve the assortment optimization problem to
maximize the expected revenue. Denote the price of product mj and nj by rmj and rnj respectively. Firstly, we
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want to discuss the expected revenue gmj and gnj by cases.

•When nj ∈ SN , the expected revenue gnj |mj
= rnj .

•When nj ∈ S̄N , the expected revenue gnj |mj
=

∑
ni∈N+

ρnjni|mj
gni|mj

.

•When mj ∈ SM , the expected revenue gmj
= rmj

+
∑

ni∈N+

σmjni
gni|mj

.

•When mj ∈ S̄M , the expected revenue gmj
=

∑
mi∈M+

ρmjmi
gmi

.

Therefore, this assortment optimization problem can be formulated by

min
∑

mi∈M+

λmigmi

s.t. gnj |mj
≥ rnj

∀nj ∈ N+,

gnj |mj
≥

∑
ni∈N+

ρnjni|mj
gni

∀nj ∈ N+,

gmj
≥ rmj

+
∑

ni∈N+

σmjni
gni|mj

∀mj ∈M+,

gmj
≥

∑
mi∈M+

ρmjmi
gmi

∀mj ∈M+.

(4)

This problem is a linear program with decision variables
{
gmj | mj ∈M+

}
and

{
gnj | nj ∈ N+

}
. We make the

decision whether we offer product mj and nj according to which constraint is tight. When g∗nj
≥ rnj is tight, it is

implied that rnj
≥
∑
ni∈N ρnjni

g∗ni
. We can receive more revenue by selling product nj than allowing the interest

transferred to other products. Then we decide to offer product nj . On the contrary, when g∗nj
≥
∑
ni∈N ρnjni

g∗ni
is

tight, we receive more revenue by allowing the interest transferred from product nj to other products than selling
it. Then we decide not to offer product nj . Thus, this assortment optimization problem can be solved efficiently.
Since we know that a linear program has zero duality gap, we can easily write the dual program of the previous
linear program. The dual program is more intuitive and can be interpreted by maximizing the revenue. The dual
program is given by

max
∑

mi∈M+

rmi
wmi

+
∑

ni∈N+

rni
yni

s.t. wmj
+ xmj

−
∑

mi∈M+

ρmimj
xi = λmj

∀mj ∈M+,∑
mi∈M+

σminjwmi + ynj + znj −
∑

ni∈N+

ρninjzi = 0 ∀nj ∈ N+,

wmj
, xmj

, ynj
, znj

≥ 0 ∀mj ∈M+, nj ∈ N+.

(5)

4.2 Proof of Optimality

We denote the optimal solution to the linear program above by g∗M and g∗N |M . For each optimal expected revenue
g∗nj |mj

from product nj conditioned on a purchase decision on productmj , one of the first and the second constraint
must be tight, otherwise we can decrease g∗nj |mj

by a small ε and keep the solution feasible. Then the objective
value will decrease as well so the g∗nj |mj

is no longer the optimal solution. Similarly, we have that for each optimal
expected revenue g∗mj

from product mj , one of the third and the fourth constraint must be tight. Therefore, we can
observe that this optimal solution satisfy that

g∗nj |mj
= max

{
rnj ,

∑
ni∈N

ρnjni|mj
g∗ni|mj

}
and g∗mj

= max

{
rmj

+
∑
ni∈N

σmjni
g∗ni|mj

,
∑
mi∈M

ρmjmi
g∗mi

}
.
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Then we can obtain the maximum revenue from each customer by plugging g∗M and g∗N |M into
∑
mi∈M+

λmigmi .
We can choose the optimal assortment as described in the previous subsection such that the revenue obtained by
each product is equal to g∗M and g∗N |M .This completes the proof of optimality.

5 Numerical Experiments

To test the performance of the proposed model, we run some numerical experiments. The data for training and
testing in these experiments are generated according to the maximum utility model provided by Ghoniem et
al., (2016), which also takes the asymmetric cross-selling effect into consideration. In this model, customers are
classified into different segments. Each segment of customers has different reservation prices for each product.
Moreover, the correlation between the two categories is modeled that when a customer purchases a product from
the primary category, he will have new reservation prices for the secondary category products. The customer will
choose the product with the highest price below the reservation price to maximize utility. For the generated train-
ing data, we estimate the parameters for our proposed multi-category Markov chain choice model (Model 2) by
the derived expectation-maximization algorithm. In some business settings, such as most of the e-commerce, we
are allowed to offer different secondary products right after the purchase decision on primary category products
is made. On the contrary, for the retailers such as supermarkets, we are not allowed to offer different secondary
products immediately. In the following experiments, we have both online and offline settings. Then we can find
the optimal assortment and use this assortment to calculate the revenue from test data. Then we do the same thing
to the benchmark model (Model 1), which is the Markov chain choice model treating different categories indepen-
dently, and make comparison between the proposed model and benchmark model. The results of experiments are
presented in the following table.

Table 1: Performance of Two Models
Offline 1 Online 2 Online 3 Offline 4 Offline 5

Number of observations 106 106 2× 106 2× 106 2× 106

Number of assortments 5000 5000 5000 4000 4000
Number of segments 100 100 500 1000 1000
Size of each category 10 10 10 10 10
Category 1 price Normal Normal Normal Gamma Gamma
Reservation price Normal Normal Normal Gamma Gamma
Model 1 accuracy 78.827% 77.481% 78.798% 31.933% 34.528%
Model 2 accuracy 78.825% 77.503% 78.756% 31.763% 34.452%
Model 1 revenue 67747 73172 74291 410560 320789
Model 2 revenue 67985 78503 77737 413795 324477

The accuracy in the table above is calculated by the total number of wrong count of the estimated expected pur-
chases of each product compared with the actual purchases. From this table, we can see that the two models give
the similar estimation accuracy. Both of the two models fit the normal distributed price cases very well, but they
fit the gamma distributed price cases poorly. Furthermore, we can observe that the proposed model does improve
the revenue.

6 Conclusion

We explored the assortment optimization for multi-category products. We extended the Markov chain choice
model by adding the categorical transitions into the Markov chain, adapted the expectation-maximization algo-
rithm to fit my proposed model from sales data, and solved a linear program for assortment optimization. The
numerical experiments demonstrate that the proposed model gives about 1% to 5% more revenue than the Markov
chain choice model for independent choice across different categories. The Markov chain choice model shows
good flexibility in assortment problems under different business settings and tractability for parameter estimation
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and assortment optimization. In the future, we will work on a robust optimization formulation for this problem
to address with the potentially inaccurate parameter estimation.

7 Ongoing Study: Robust Assortment Optimization

However, when we assume that the transition matrix in the secondary category N is correlated to the purchase
decision in the primary category M , it leads to an explosion of parameters since we need |M+| |N+|2 parameters
to handle the transition of interests within the secondary category given every purchase decision in the primary
category. When we do not have enough sales data of a product in the primary category, we may have estima-
tion with large variance. Therefore, we need some special treatments to find the optimal assortment against such
uncertainty. We use robust optimization with a careful construction of the uncertainty set to prevent from both
out-of-sample disappointment and excessive conservation. We do not want the uncertainty set in the robust opti-
mization contains extreme values, otherwise the solution will be very conservative. Due to the large variance of
estimated PN |mj

when the sales records of product mj is insufficient, this estimation may be an extreme value. A
possible method is to calculate a pseudo transition matrix PN for the second category products. This pseudo tran-
sition matrix modified transition matrix are estimated using all the data, which reduce the variance and include
more possible correlations. Then we can determine P̃N |mj

by taking both the PN |mj
and PN into consideration. A

straight forward method is to calculate a weighted sum of the transition matrix PN |mj
and PN . The weights can

be determined by two strategies.

7.0.1 Proportional Weights

The weights can be determined by the proportion of the purchase decision on product mj . If we have many sales
records of product mj , then we can assign a larger weight to the transition matrix PN |mj

. A reasonable choice is to
compare the number of sales records of product mj to the average number of records of each product. Therefore,
we have that

P̃N |mj
=

|M |
∣∣Tmj

∣∣
|M |

∣∣Tmj

∣∣+ |T |
PN |mj

+
|T |

|M |
∣∣Tmj

∣∣+ |T |
PN .

7.0.2 Greedy Weights

We can also find the weights α that fit the sales data best. Define that P̃N |mj
= αmj

PN |mj
+
(
1− αmj

)
PN |mj

.
Recall that the purchase data is denoted by ẐN |mj

and the probability of considering each not offered product

in category N is given by ΦS̄N
(SM , SN ) =

(
I−PS̄N

)−T
ΛS̄N

. We determine the weight for each product mj by
solving an optimization problem that

α∗mj
= arg min

αmj
∈[0,1]

‖ẐN |mj
−ΛSN

− P̃T
S̄N |mj

ΦS̄N
(SM , SN ) ‖1.

7.0.3 Robust Formulation

Then we can formulate and solve a robust optimization problem when we want to determine the optimal assort-
ment. Compared with the deterministic linear program, we allow the parameters varying in an uncertainty set
and solve for the optimal worst-case assortment. In this problem, we allow the transition matrix PN to vary. For
each entry ρninj

in the transition matrix PN , we construct the lower bound of the uncertainty set by the minimum
of weighted parameter, which is given by ρ

ninj
= min

{
ρ̃ninj |mj

| mj ∈M+

}
. Similarly, we construct the upper

bound for ρninj
by ρ̄ninj

= max
{
ρ̃ninj |mj

| mj ∈M+

}
. Since we do not use the deterministic transition matrix, we

need to check the feasibility of each uncertain ρninj
by adding the constraint

∑
nj∈N+

ρninj
= 1 for each product

ni into the uncertainty set. Therefore, we have the uncertainty set by

UPN
=

ρninj
∈
[
ρ
ninj

, ρ̄ninj

]
,
∑

nj∈N+

ρninj
= 1 | ni, nj ∈ N+

 .

16



Then we want to use the uncertainty set to formulate a robust optimization problem. We use the dual program
of the original formulation, since it is more explainable under the setting of revenue maximization and the corre-
sponding robust optimization problem can also be explained by maximizing the worst-case revenue. We can write
the robust formulation by

max min
PN∈UPN

∑
mi∈M+

rmi
wmi

+
∑

ni∈N+

rni
yni

s.t. wmj
+ xmj

−
∑

mi∈M+

ρmimj
xi = λmj

∀mj ∈M+,∑
mi∈M+

σminj
wmi

+ ynj
+ znj

−
∑

ni∈N+

ρninj
zi = 0 ∀nj ∈ N+,

wmj
, xmj

, ynj
, znj

≥ 0 ∀mj ∈M+, nj ∈ N+.

(6)
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