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Abstract

In this research, we explored the assortment optimization for multi-category products. We built a Markov chain
choice model to model customers’ choices in a two-category retail systems and generalize the correlation within
and between categories as state transition. Based on the asymmetric cross-selling effect, we classified the two cat-
egories by the primary category and secondary category and assumed that both the initial interests and transition
of interests in the the secondary category products depend on the purchase decision in the primary category, but
the reversed case does not hold. Under these assumptions, we adapted the expectation-maximization algorithm
to estimate the parameters for the proposed Markov chain choice model and formulated a linear program to solve
for an optimal assortment. The numerical experiments demonstrate that there is about 1% to 5% improvement in
revenue by the proposed model compared with the benchmark, the Markov chain choice model for independent
choice across different categories.

1 Introduction

Revenue management is the subject for commercials how to make better decision to improve their revenue. As-
sortment, the collection of products offered to customers, is one of the decisions a commercial need to take into
consideration. To find an assortment, customers’ choices play an important role since these choices determine
the demand of each product. Given different collections of offered products, customers make different purchase
decisions so the total revenue will be very different under different assortments. The problem of finding an opti-
mal assortment attracts more and more researchers and many models are developed. We care about models for
customer choice behavior, how to fit the model from observed sales records, and the assortment optimization for-
mulation under the proposed model. There are already plentiful constructive results and progresses in assortment
optimization, which will be discussed in the later section.

In this research, we focus on the multi-category products and assume that there is choice correlation not only
within each category, but also between multiple categories. For the simplest two-category case, we study a cross-
selling effect between these two categories called asymmetric effect, where these two categories are characterized
by a primary category and a secondary category. This asymmetric cross-selling effect is that when a customer
makes a decision purchasing or not among the primary category products, he or she may consider a product
of the secondary category, but this process cannot happen reversely. It is unlikely that the secondary category
products have significant effect on the primary category products such that a customer move the willingness to
purchase from the secondary category to the primary category. One example is the spaghetti and spaghetti sauce
mentioned above, and another example is the phone and phone case. It is reasonable that one arrives for a new
phone and then have interest in a new phone case, but the reverse case makes no sense.

We build models to study how customers select their preferred products and make purchase decisions on
products of two different categories under this asymmetric cross-selling setting. Since we are considering the path
of a customers decision-making, we can treat it as a Markov chain with the assumption of the Markov property in
transition of interests. Therefore, the choice model is based on the Markov chain choice model.



1.1 Literature Review

Chong et al. (2001) suggests that customers will form a order of products based on various features. When the
highest priority product is not offered, the second priority product will play a role of substitution. The Markov
chain choice model for one category products is proposed by Blanchet et al. (2016). They show that many popular
customer choice models can be exactly expressed by the Markov chain choice model so that Markov chain choice
model can be generalized in many business settings. Also, they show that the assortment optimization under
Markov chain choice model can be solved efficiently by providing a polynomial-time algorithm to find the optimal
assortment exactly. Desir et al. (2015) study constrained assortment optimization problems subject to capacity
constraints under the Markov chain choice model. Markov chain choice model is a flexible model and widely
used in assortment optimization.

The expectation-maximization algorithm is first proposed by Dempster et al. (1977), which is designed to deal
with the incomplete log-likelihood due to missing data and estimate the parameters by maximizing a carefully
constructed complete log-likelihood. The estimated parameters from the complete log-likelihood are guaranteed
to converge to a local maximum of the incomplete log-likelihood function when some regularity conditions are
satisfied, which is proved by Wu (1983) and Nettleton (1999). Simsek and Topaloglu (2018) use the expectation-
maximization algorithm to estimate the parameters in this Markov chain choice model.

On the other hand, when it comes to the multi-category case, things become complicated. The asymmetric
cross-selling effect was discussed by Walters (1991) with the example of spaghetti and spaghetti sauce. However,
the choice models under this asymmetric cross-selling effect and corresponding optimization formulations are not
well-studied. Ghoniem et al. (2016) studied the assortment and price optimization under this asymmetric cross-
selling effects a maximum-surplus choice model. However, this model is based on strong assumption on the price
of products, which cannot solve for general multi-category assortment optimization problems. Therefore, it is a
natural idea to use the Markov chain choice model for the customers’ choices and assortment optimization.

1.2 Main Contributions

We extend the Markov chain choice model for the multi-category assortment optimization problems. We adapt
the expectation-maximization algorithm to estimate the parameters. We also formulate a linear program to solve
for the optimal assortment. Furthermore, after we figure out the Markov chain choice model for a two-category
system with this asymmetric cross-selling effect, it is reasonable that we can use this asymmetric cross-selling
effect to construct a hierarchical structure of products and formulate a larger Markov chain choice model for it.
For example, in an electronic store, we can find plentiful such effects, including monitors and Nintendo Switch
consoles, consoles and games, and consoles and corresponding accessories. Then we have a hierarchical structure.

1.3 Outline

In section 2, we describe how the Markov chain choice model is built for the multi-category products setting.
Also, the common notations in this article will be defined in this section. In section 3, we derive the expectation-
maximization algorithm to estimate the parameters in this multi-category Markov chain choice model and provide
the proof for the convergence of the proposed expectation-maximization algorithm. In section 4, we formulate a
linear program for assortment optimization under the proposed multi-category Markov chain choice model and
prove the optimality of the solution. In section 5, we present the numerical experiments to show the performance
of our model. In section 6, we discuss our ongoing work, a further assortment optimization formulation by robust
optimization.

2 Model Formulation

Denote two categories M and N, where category M is the primary and purchase interest in category M can
spark purchase interest in the secondary category N. There are |M| products in category M, denoted by product
mi,ma,- -+ ,mp. Similarly, there are | V| products in category N, denoted by product ny,ns,- -+ ,n|y|. The no
purchase options in the two categories are denoted by mg and ny and the categories with no purchase option are



denoted by M, and N,. From these two categories, collections S); and Sy are offered. Then not offered sets are
denoted by Sy, and Sy. When the full set of category M is offered, the vector of probabilities that a customer
arrives with purchase willingness on each product in category M is denoted by A,;, and each probability of
interest in product m; is denoted by \,,; Vm; € M,. We have the similar notation Ay and \,; Vn; € N, for
category IN. Then we denote the transition probability by a transition matrices P; and Py by

Pmomg Pmomy e Pmom Prgono Prgony e pnomN\
Pmimo Pmim e pm1m|M\ Pning Pning T pn1n|N\

PM = . . . . and PN =
Pmyaymo - Pmpagma 7" Pmyarmya Prinyino Prynne 7 Prynynng

In this matrix, the probability of interest transition from product m; to product m; is given by py,,.; in the primary
category and that from product n; to product n; is given by p,,,,; in the secondary category. Also, we denote the
“spark” possibility of product m; in the secondary category by product n; in the primary category by o, ;n;.
Therefore, we can also construct a spark matrix S by

Umono Umonl e O-momN‘
U7TL1n0 Umlnl e U'rnlmN‘
Omipno Omiyma °°° Omypny

According to our definition of primary category and secondary category, we do not allow purchase interest in
product m; € M, sparked by product n; € N,. Therefore, the purchase interest in category M products can only
be transferred within category M and cannot be sparked by purchase decision in category N. We can keep using
the Markov chain choice model for one category proposed by Blanchet et al. (2016). We denote the probability that
a customer in this two-category system with S, offered considers product m; by

Gy (Sv) = Amy + D P, Sm. (Sar), ¥my € M.

m; ESm

The probability of considering each product in category M can be obtained by solving a system of linear equation.
Define ®5,, (Su) = {dm, (Su) | m; € Sm}, As,, = {Am, | mj € Su},and Py, = {pm,m, | mi,m; € Sar}. Then

we have a system of linear equations (I — P SM)T &5, (Su) = Ag,,. According to Puterman (1994, corollary

M
C.4), if the probability of interest transition p,,,m; > 0 Vm;, m; € M, is satisfied, then (I - Pg,, ) ! exists for any
assortment Sy;. Therefore, we always have the solution for the system of linear equations by

=T
b5, (Su)=(I- PSM) Ag,,-

With this solution, we can easily calculate the probability of visiting each product in category M. Then we want
to determine the probability of visiting product n;, which needs to be discussed in two cases. When a customer
only wants to purchase a product from category N products, we just treat it as the single-category case. When a
customer is initially interested in category M products and then interested in category IV products, this sparked
interest depends on the previous purchase decision on category M products, so we need to consider a conditional
probability ¢,, |, (Sa, Sn) that a customer in this two-category system with Sy, and Sy offered considers prod-
uct n; given a purchase decision on product m;. For secondary category N, the initial purchase interest in product
n; is sparked by a purchase decision of product m; in category M with probability A, |,,, = 0m,n,- We consider
the purchase interests transferred within category [V with the assumption that the transition of interests among
the second category products is correlated to the purchase decision in the primary category. This assumption
makes sense in many business settings. For example, when a customer bought a set of suit and considered to buy
a pair of leather shoes then, he might be more likely to buy a pair of shoes matching his suit. Therefore, he might
narrow down the choice of colors and styles. To address with this correlation, we denote the purchase interests
transferred from product n; to product n; in category N conditioned on the purchase decision on product m; in
category M with probability py,,pn;|m,; n;m; (Sm, Sn) and the transition matrix in the category N by Py, for



each purchase decision on product m; in category M. Therefore, we consider all the probability that a customer in
this two-category system with Sy, and Sy offered considers product n; given a purchase decision on product m;

by
¢"L]“77lj (Sm, Sn) = Omjn; + Z Pring|m; ¢7L1j|77lj (Sm;SN), Vnj € Ny.
n; €SN
Then each conditional probability above can be calculated by solving a system of linear equations. We define
B3, m, (Sar,S8) = {@nyjm, (Sn,Sn) | nj € Sy} and S, 5. = {0m;n, | n; € Sn}. If the probability of interest
transition py,;pn;m; > 0 Vn;,n; € N, is satisfied, then (I -P gN‘mj)il exists for any assortment Sj; and Sn. So
we have the solution by

q)gwlma‘ (Sm,5n) = (I - PSN"’”J‘) Smjgzv’

When we have each conditional probability, we can easily calculate the joint probability ¢, (Sar, Sn) that a
customer considers any product combination of m; and n; when Sj; and Sy are offered. Define a collection of
conditional transition matrices within category NN that Py, = {P Nim, | mj € M+}. Since we easily see that we
can obtain all the information in this model after we know the parameters A s, Py, P |3 and S, the next question
is how to estimate these parameters. This will be used to calculate the likelihood of parameters and all the detailed
procedures will be explained in detail in the next section.

3 Parameter Estimation

To further optimize the assortment selection, we need to estimate the parameters in the proposed Markov chain
choice model. We will utilize the expectation-maximization based estimation method proposed by Simsek and
Topaloglu (2018) and extend the model to the multi-category case. Denote customer t’s purchase decision on

category M products under assortment Sj; by random variable Z j; (S](th)) that

Zar (syj) - (Zmo (sg}) T, (5552) seees Do (S](J))) € {€mps@mys- s Cmnr )

}\MH’I

wheree,,, € {0,1 and only the entry corresponding to product m; is 1. When customer ¢ purchases product

m; under assortment Sy, we have Z,,,, (Sg?) = 1and Z,,, (Sg}) = 0Vm; € My\{m;}. Therefore, we have
VAY: (Sz(vt[)) = ey,,. Moreover, we know that I’ {Z M (S](C})) = emj} = Om, (SJ(C})) for any offered product m; € Sy,.
Similarly, denote customer t’s purchase decision on category N products given the purchase decision in category
M under assortment Sy; and Sy by Z |, (S](\Z), S](\t,)> that

t t t t t t
Zn0|mo S](\/I)a‘s](\]) Z’rn\'rng S](u)ﬂg](\l) e Z’VL‘N”TVL() S§\4)75](V)
t t t t t t
t) o) Zng|m: 51(\4)751(\1) Zny|my S](\/I)7SJ(V) Z’HNH"M S](VI)7S](V)
A (SM>SN> = . . .
t t t t t t
Zno|m|M\ (S](\/[)v‘g](\f)) an\m\M\ (S](\/[)vsj(\l)> Z”|N||mllw\ (SI(\/[)“SJ(V))

Now we can define the row of Z |, (SJ(\?, SJ(\?)) corresponding to the given purchase decision on the product m;
by Zn|m, (Sl(\f[), S}p) € {eny,€nys - €n y, }, Where e, € {0, 1}|N|Jrl and only the entry corresponding to prod-
uct n; is 1. When customer ¢ purchases product n; under assortment Sy, and Sy given the previous purchase
decision on product m;, we have Z,, |, (S](\Z), SJ(\?) = land Z, |, (51(\2)7 SJ(\’;)) = 0Vn; € N;:\{n;}. Therefore,
we have Zy,,, (SR’?,S%)) = e,;. Moreover, we know that P {ZN|mJ. (SJ(\Z), S;@) = enj} = On;|m, (S](&),SJ(\?)
for any offered product n; € Sy. From empirical data, we have the assortment Sj(vt[) and Sj(\t,) for each cus-
tomer t. Also, for each pair of assortment, we have the customer ¢’s purchase decision ZEC[) ~ Zy (S}?) and

4



Zg\t,)‘mj ~ ZN|m, (SJ(\Z), S](\?)). Denote the parameters (A > P, Py, S) by W. Therefore, we can write a likeli-
hood function for customer t’s purchase decision by
z®

e J

()
L(t) (W) = H ¢m_7» (SJ(\? | AM? PJW) H ¢nj|7nj (S](\fl)? S'](\I;) | W) an‘mj

mjEM n;ENL

We can consider the likelihood of the purchase decisions all the customers by L (W) = [[,., L®) (W). Then we

have the log-likelihood for empirical data { (SJ(\Z), S’j(\?), Zg\?, ng,)m) |t e T} by [ (W) =Y, .41 (W), where

1O W)= 3 2 Nogom, (S 1 AarPar) + D2 20 10860 1m, (55,5 | W)

mieMy n;eENL

We know that the optimal feasible parameters that fit the given data maximize this log-likelihood function. There-
fore, to estimate the parameters, we can formulate and solve an optimization problem that

max [ (W)
\%\%

s.t. Z Am; =1,

m;jeMy

mjeMy (1)

S by =1y € My € Ny,
njeNL

> Omm, =1 Vm;eM,.

n;EN4

However, according to Simsek and Topaloglu (2018), this optimization problem is hard to solve since there is no
closed-form expression for ¢, (S*g? | Ay, P M) and ¢y, |, (W). This difficulty motivates to use an expectation-
maximization algorithm.

3.1 Overview of Expectation-Maximization Algorithm

The general idea of an expectation-maximization algorithm is that we initialize the required parameters and up-
date them iteratively through an expectation step and a maximization step. We need to define some new random
variables to construct a new log-likelihood function, estimate the expectation of the new random variables condi-
tioned on previous estimated parameters, and then update the parameters by maximizing the new log-likelihood
function. We define the initial interest in category M products to be our first new random variable. We denote this
random variable by

Fy = (FmU,le,...,Fm‘M‘) € {emo,eml,...,em‘Ml} .

When customer ¢ enters into the system with initial interest in product m; , we have F,,;, = 1 and F,,, =
0 Vm; € M\ {m;}. Therefore, we have F); = e,,,. Moreover, by the definition of initial interest we have
that P {Fy; = e,,,, } = A, . Then we define the interest transition of customer ¢ within category M products under
assortment Sj; by

Gmomo S](\ﬁ[) Gmoml S](\Z) U Gmomum S](\tf)
t t t
GM (S(t)> _ Gmlmg S](u) Gml’ml Sg\/[) e G'ml’rr”M‘ Sj(\/[)
M . . .
t t t
Gmummo (SJ(W)) Gm\]\x]\ml (SZ(M)) e Gm\M\mUVI\ (SZ(M))
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Since for each product m;, the purchase interest must transfer and can only transfer to another product m;, we
denote the row of G (S](\?) by G, (Sﬁ}) corresponding to the purchase interest transferred from product m;.
When customer ¢ transfer his purchase interest from product m; to product m; with probability g,,,n; , we have
that P {Gmi (Sg?) = emj} = 9m,m,- We define a collection of random variables {Gmi (S](\Z)) | m; € M+}. Simi-
larly, we can define the interest transition of customer ¢ within category N products conditioned on the purchase

decision on product m; under assortment Sy and Sy by G|, (SJ(\Z), S;@). Also, the row of G |, (S](Vt]), SJ(\?)
corresponding to the purchase interest transferred from product n; is denoted by G, |, (Sg\fl), Sj(\t,)). We need to

be careful that only when product m; is offered, we have that G, |, (Sg\ff), SJ(\’;)) € {eny,€ny,- - €ny, }- When
product m; is not offered, the transition from product m; to any product n; is not a feasible path in this Markov

chain choice model. Therefore, we have that G, |, (Sj(vt[), SJ(\?) does not exist. To eliminate this infeasibility and
keep the format, we can set P {Gn”mj (Sj(\t}, S](\f)) = 0} = 1Vm; € Sy. We define a collection of random vari-

ables {Gwmj (SJ(\Z), SE{?) | mj € My, n; € N+}. Finally, we need to consider the purchase interest in category IV

products sparked by category M products. We define customer t’s interest in category N products sparked by
category M products under assortment Sy, by

Hmono Sj(\tl) Hmonl S](\f[) Hmonuv\ SJ(\;[)
(t) Hipyng SJ(\? Hpin, Sj(\tl) Hmlmzv\ SI(\Z)
Hy (547) = . .
t t t
Hm\Mm() (SJ(\/I)) Hm\M|“1 (SJ(\4)> Hm\]w\n\N\ (S§V[))

According to the assumption, the purchase decision on category M product m; sparks the purchase interest in a
category N product n;. Similar to the transition matrix Gy, (S](\?, Sgp), we need to be careful that the sparked
interest happens only when a purchase decision is made. Therefore, we denote the row of Hj, (S](\Z)) correspond-
ing to the purchase interest sparked by any product m; € Sj(tt[) by H,,, (S](Vt[)) € {eng,€ns, .. €ny ;- When
customer ¢’s purchase interest in product n; is sparked by his purchase decision on product m; with probability
hm;n;, we have that P {Hmj (S](Vt[)) =ey, } = Ry ,n,;- When product m; is not offered, Hy, ;r; (S](\fl)) does not exist
so that we can set P {Hmj (S](JI)) = 0} = 1Vm; € Sy for feasibility. Similarly, we still define a collection of
random variables {Hmj (SJ(\Z)> | m; € M+}. Till now, we have all the random variables to construct a different
likelihood function. If we have empirical data {S‘J(\Z), 5‘](\?), ZSCI) , Zg\t,)l Ve ]?‘S\fl), Ggﬁ} , (A}E\t,)l Ve
likelihood function for customer ¢’s path in this Markov chain choice model by

ﬂs\fl) |tET}, we have a

20 A () 20 &
t) Bl Goym,; Hinlin, ninglm;
ng (W) = H Am; H Pmim; Om;n; H Pringim;
m;EMy mi,m;EM mjeMy mjeMy
nj €Ny ni,njEN4
We can consider the likelihood of the paths all the customers by Lp (W) = [],cr Lg) (W). Then we have the
log-likelihood function for empirical data {S*g?, 5’1(5), ngf) , Z%)‘m] , F%} , GS\?, f}g\t,)‘ e ﬁgf} |teT } that

W)= 3 B logd, - > G 10 o,

mjEMy mg,m;j €My
(0) A (1)
+ Z Hmjnj log Om;n; + Gninj|mj log Pringm;-
m;EM mjEM
’ﬂjEN+ ni,nj€N+



Similar to the maximization problem (1), the optimal feasible parameters that fit the given data maximize this log-
likelihood function. Therefore, to estimate the parameters, we can formulate and solve an optimization problem

that
max Ip (W)
w

s.t. Z Am; =1,

mjEMy

> Pmm, =1 Vmi € My,
ijM+ ’ (2)

Z Prinjlm; = 1 vTnj € M—i—v n; € Ny,
njeENL

Z Omyn; = 1 Ym; € M.
njENL
However, since we do not have access to data {f‘g\?, Ggf} , Gg\t,)l Ve
tively by an expectation-maximization algorithm: we calculate the conditional expectation of these random vari-
ables with previous obtained parameters, solve the optimization problem with then estimated data, then update
parameters and repeat this process until the parameters converge.

HS\? |t e T}, we can solve this problem itera-

3.2 Conditional Expectation of Desired Random Variables

The expectation-maximization algorithm solves problem iteratively. In each iteration, we have an expectation step
and a maximization step. We discuss the expectation step first. In the very beginning, we initialize the parameters

to be W) (A(l) P(l) P(l) S(l)) and in each iteration I, we use W) = (A%},Pm pY S(l)> to estimate

N|M> NIM>
the conditional expectation {F%} , G(t) Gg\t[)‘ M H%} |te T} by

B =B [Fn, | Zu (87) = 28, WO,

G _ | I:Gmimj (S‘J(\Z)) | Zy, (5“@) Z(t) W(l)}

Gﬁffjlm = E |Guinyim, (S57.58) 1 Z0r (817) = 28 Zovi, (547,80 = 24, W,

N
D =B [y, (552,88 1 20 (S5) = 280, 2wy, (857, 88)) = 24, . WO
)=

7\ = e, for some m;, € Sy and ZN|m,, (gf(vtf)’g](\?) =2y

. a(t) _
For convenience, we assume that Z (S M N =

e,, for somen; € Sy.

3.2.1 Estimation of {IAT‘EC? |t e T}

For binary variable F,,,,, we have E [F,,,,| = P{F,,, = 1}. Therefore, we can rewrite the conditional expectation
and apply the Bayes theorem to have

B = E[Fu, | 200 (8)) = 28, WO
= ]P’{ij =12y (‘SA’](LtI)) = emk’w(l)}
P {20 (817) = ems | Fin, = LWO LB (R, = 1| WO}

N ]P’{ZM (ng)) = em, | W<l>}




From our model setup, we have that P {Z M (S](j}) =en, | w® } = Om, (SJ(\Z) | W(l)), which can be obtained by

solving a system of linear equations. Also, by the definition of F;;, we have P {F =1|WOh} = )\nlL We can
observe that when m; is offered, customer ¢ will purchase product m; if he arrives into the system first visiting

product m;. Therefore, when we have assortment Sy for customer ¢ such that m; € Sy, we can conclude that
IP’{ZM (Sz(w) =en, | Fn, = 1,W(l)} = L, =m,, where Iy, —,, = 1if m; = my and Ly, =, = 0 if m; # my.

When product m; is not offered, we can calculate this probability by solving a system of linear equations. We
still use the idea that the purchase decision on product mj can be made when the customer changes his deci-

sion from product m; not in assortment S, to product my.. So we define a new variable 6,,,, (S M| ]?‘Sf} , W(l)) =
P {Z M (Su)=em, | Fu = FS\?, W(l)} for the probability that customer ¢ visits product m;, given a previous vis-

iting on product m;. For any not offered product m;, € §1(\f[), we have that

m1€§§\f1)

We use O3, (S’](\Z) \ em_j,W(Z)) = {Gmi (51(\? | emj,W(l)) | m;,m; € 57’5&)} to denote the vector of such probabili-
ties for not offered products in category M. We also define the transition matrix of not offered products in category
M by Pg,, and the transition vector from product m; to the not offered products by P,,, 5,,. Now we have the
-T

solution of the system of linear equations above by ©g, (S'J(Vf[) | em, W(l)) = (I-Pg,) P, 5, Thenwe can

plug the solution into Fr(,f_;l) and have that
b (359 e, W) 28

b (S5 I WO)

FlD —

3.2.2 Estimation of {(A}gf[) |t e T}

In an infinite-horizon Markov chain, any transition from product m; to product m; can be expressed as an event
that customer ¢ visits product m; in stage r and product m; i stage r + 1 for some r € Z". We define a binary

variable V7 (S](\ﬁ[)) = 1 if customer ¢ visits product m; in stage r given assortment Sy;. Otherwise, we have

Vi, (Sg?) = 0. Therefore, we can define a collection of random variables by {V}g (SJ(\?) |reZ* }, where

M (Sj(vt[)) = (V,;O (S](Vt[)) v (5(”) s Vi (S;f})) € {emp,emis-€mp -

For binary variable G, m; (5’](\?), we have E [Gmimj (S’J(\?ﬂ =3, {V,Z; (S( )> VT‘H (SAJ(\?) = 1}. Then

. AL
we can rewrite G,(n; 7),1] by

To further simplify the expression of GASf;f)nj, we can put the event V. (S](f{)) = 1 to the conditional part so that

we can use the transition parameter P, in this expression. We apply the definition of conditional probability and
have that

@ij Z]P’{VTH (S(t)) —1|Zu (SJ(\Z)) = e, VI (S](\?) _ 7Vv(l)}

xIP’{ (sg;) —1|Zuy (5(”) = e, <l>}.



Then we use the Bayes theorem to calculate the two probabilities above respectively. For the first probability, we
have that

P{V,;jl (sg‘;)) —1|Zn (5}?) = e, VI, (s(;}) - 1,W<l>}
P{Zn (817) = emu | Vit (817) = Vi (807) = . wO ke {viit (8§7) =11 vip, (817) = 1. w0}
B IP’{ZM (s“)) —em, | VI, (sg})) - 1,W<l>}

By the definition of purchase interest transition, we can easily see that P {V”H (S (t)> =1[Vy, (5’5@) =1, W } =

m
,o£f3i m, . Since we are dealing with an infinite-horizon Markov chain model, that customer ¢ purchases product my,

conditioned on a previous visit to product m; in stage r or r + 1 has no difference with that customer ¢ purchases
product my, conditioned on visiting product m; in the first stage. Therefore, we can keep using the same defined
variables and solving the same system of linear equations as what we do previous section. We have that

(5 (SJ(\Z) | emj7W(l)) p’ETlL)lm]
O (S57 | emi, W)

PV (519) = 1120 (S19) = emnvi, (519) =1 W0} =

Then we want to calculate P {Vﬂ’;i (SJ(CI)) =1|Zy (S'z(vf[)) = ey, W } We still use Bayes theorem to rewrite it
by

Therefore, we can use these results to determine G‘ﬁ,if,%l ; by

O (8 e, WO
G (q:k G W<3) P (S17) =11 W)

gmk (S](\f{) ‘ em]’?W(l)) pgrll) m;

B (5*552 |W(l)> ZP{ (Sg?) =1] W“)}.

We know that the probability that customer ¢ visits product m; is equal to sum of the probability that he visits prod-
uct m; in every stage. According to the definition of V,;, (S (t)) we know that Y7 {VT (S / ) 1| W l)}

Om; (S(t | W l)) In conclusion, we have the expression for G,f,f%@] that

om, (557 | W)
Om, (S17 | WO)

Gt = O (30 ey WO 0,
3.2.3 Estimation of {G(t‘M |t e T}

According to our model, both the initial interests and transition interests in category N products both depends
on the purchase decision of category M products. Therefore, when we estimate the transition interest within



category N products, we follow the same procedure as estimating category M products, but we need to consider
the conditional probability given a purchase decision ZS\? = e, Thus, we adapt the previously defined variable
O (Sa1 | BS), WD) to be b, (Sar, Sy | L W) = P{Zy (Su1, Sv) = en, | Hyn,, = FILL, WO for the
probability that customer ¢ visits product n; given a previous visiting on product n; and a purchase decision on

product my,. For any not offered product n; € g“](\?, we have that

ng Eé%)
Similar to the previous sections, we have that Os,.., (S‘g\ff), S*J(\? | em,;, W(l)) = (I-Psym,) -Tp
P, 5y |m, is the row of transition matrix P y/,,, from product n; to all the not offered products, is the solution for
the system of linear equations above. Also, we use the conditional probability of visiting product n; given the
purchase decision on my, instead of the unconditional probability. Then we just use the same method but replace

all the unconditional probability by the corresponding conditional version and calculate G (t_’l)_l by
ning|lmy

N where

¢7li|mk (gj(\?v 5,1(\1;) | W(l))

A - (SJ(J}S%) | enj,W(”) p(z)

ning|mg ning|my
Last but not least, it is very natural to set G N|m,, = 0 forany k" # k.

3.2.4 Estimation of {IA{%[) |t e T}

Now we need to consider the conditional expectation of customer t’s interest in category N products sparked by
product m; given that he eventually purchases product m;, and product nj. Similar to the previous section, we
still define a binary variable V. (SJ(\?, S%)) = 1 if customer ¢ visits product n; in stage r given assortment Sy,

and Sy. Otherwise, V7' (SJ(\Z), S](é)) = 0. This time we need to consider that customer ¢ visits product m; in stage

r and product n; in stage r + 1. We can see that stage r is the last stage customer ¢ visits category M products.
So, it is infeasible when product m; is not the purchase decision of customer ¢t among category M products. We
can set that ﬁy(,'iznj = 0 Vm; # my and only calculate Hﬁff%ﬂ For binary variable H,,,n, (5‘1(\?, S'](\t,)), we have

E [Hmknj (S'J(CI), Sg)ﬂ =>2,P {V,flk (S‘g\?) = V,fj“ (S‘g\ff), S'](\?) = 1}. Then we can rewrite Eﬁi;.l%j by

AU, =B [Ho, (S5.50) 1 2 (S9) = 240, Zuvi, (849 5) = 240, W)
_ ip{vnﬁk (SE\? =V (555}75*](;)) —1|Zu (55\?) = e Zvim, (35\2)75‘](5)) _ enk,W(”}.

We follow the same idea to move the event V,; (Sj(\? = 1 to the conditional part and use the definition of

conditional probability to rewrite H f,’i;le ; by

N——
|

(oo}
ah, =S PVt (500,80) = 112 (81)) = e Zaim, (817.89) = ene Vi, (817) = 1.W0
r=1

xP{V;;k (sgy) =12y (55\?) = s Ly (S,(\?,S*]%)) - enk,W(l)}.
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We calculate both of the two probabilities in the formula above by Bayes theorem. We rewrite the first probability
by

LV (810.50) =11 Zar (817) = emes Zovim, (887,88 = e, Vi, (887) =1, W0}
{zM (S}f}) emer Z my (S(;},S“)) —en |V, (Sﬁ)) =1V (SMSI%) - 1,W<”}
LV (80.50) =11 v, (87) =1 w0}

IP{ZM (sg;)) = s ZN|m, (S’%}%S}i)) — e, | V7, (SI(J}) - 17W<l>}'

When we are given V) (S (t)) = 1, we know that customer ¢ visits product m; and m, is offered according to

X

the assumption Therefore, the customer must purchase product m;, and the event Z (S (t)) = e,,, must happen

given V, (S(t)) = 1. So, we only need to consider P {ZNlnlk (SJ(\?,S(t)) =e,, |V (S](\?, S(t)) = 1,W(l)},
which can be obtained by solving a system of linear equations as is demonstrated in the previous section. We keep
the same notation for that by 0,,, |, (SJ(\Z), S'](\f;) | en,, WU)) By the previous definition of interest spark, we have
that P {VJ;rl (gj(\?, 5’5@) =1|Vp (SY}) = l,W(l)} — 0\Bn,. Also, from our previous definition of probability
of visiting product n; conditioned on purchase decision on product m; under assortment S); and Sy, we have
that]P’{ZM (S'J(Vt[)) = €m,, LN|m, (S’gf[),gj(\’;)) =en, | Vi, (5‘%?) = 1,W(l)} = Gnyma (SE\?,SS)) We combine all
these results and have that

P{ngl (S}V?S](V”) =1 ZM( ](V}) = s D i, (S}j,,s“ ) =en, VI, (S(t) _ 1,W<”}
79'nk|77lk (5'1(\?, ‘§§\t7) | en_j,W(l)) Jél%)wj

¢nk\mk (Sj(\fl)vgj(\?>

Then we deal with P {V;lk (5‘1(\2)) =1|Zy (S‘g}) = €my, LN|m, (5'](\?, 5'](\?) =e,,, Wl } Similar to the previous
procedures, we apply Bayes theorem to rewrite this expression by
]P’{Vn’;k (S( ) —1|Zu (sgy) = ey ZN (SAM,S‘ ) - enk_,W(l)}
P{ZNM (SA’?,S “) —en |V, (S](j}) - 1,W<“}1P>{V,;k (55\?) —1] W(l>}
IP’{ZM (S](\Z)) = s D, (S’ﬁ?ﬁ}@) — ey, | wu>} '

From the model setup, we denote the joint probability of purchasing product m; and n; by ¢,;n; (Sar, Sn) =
Gm; (Sar) Onjm; (Sm, Sn). Therefore, this probability above can be calculated by

{VT (S(t)) =11Zu (Sz(vtf)) = e€my, LN|m, (SJ(&),SJ(\?)) = enk’w(l)}
i (5080 () =1 190 (o) 1w

e (557) v (55059 ome (317)
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The last step is to combine all these results and obtain a simple expression for H. ,(,ﬁ;f,)l , by

A O (51,89 | 0, WO) o) o
AL =3 A¢m: <<SJ‘§? ) ;klm (55\?7;”7;%1?{% (S](J)) =1 w(z)}

r=1

l
Ousims (837 S8 oa,, W) ol &

- Sop{vi, (517) =11wo}

Py, (SM) ¢m«|mk (Sj(\tl’s(t ) r=1

NG A R N O et el L
o (547) e (S30:5) 0 St (357 57)

Now we finish all the calculations of conditional expectation of desired variables. We will solve the maximization
problem with the estimated data, which will be discussed in the next section.

3.3 Update of Parameters

If we observe the structure of the maximization problem (2), it can be easily decomposed by the decision variables
= (Aum, Py, Py, S). We update Ay first by solving the decomposed problem

max Z Z Fg’,l)log)\mj
An !

teT m;eM,

s.t. Z Am; = 1.

m;EM

®3)

Proved by Simsek and Topaloglu (2018), This maximization problem has a very simple form and a neat solution
given by

F(t,0)
A+ — ZteT Fr;
m; (
Srer Cmenr, P
Similarly, we can solve the other three decomposed maximization problems and update the parameters b
Y p P p p y

VmJ € M+

(1)
p(l+1) _ ZtET Gm mJ
mim; T t (t,0)
Doter Domy, ezmr Gm'imy,
(1+1) _ ZtGT nan|mJ
n;njlm; A (t 1)
ZtET anEN+ ning|m;
(t.0)
1+1 ZteT Hm nj
Jﬁnjng = A Vmi,mj c M+, Vni,nj S N+‘

(t,0)
ZtET an€N+ m;ng

3.4 Convergence of the Proposed Expectation-Maximization Algorithm

We want to show that the sequence of parameters calculated from each iteration {W) | € Z*} converge to a
local maximum of the likelihood function L (W). We firstly define the space of parameters W = (A, Pas, Pn, S)

by

Q=cWI| > A =1 Y pom, =1 > Omm, =1L Y pasnyim; =L, ¥mi,m; € My, n; € Ny

m;EMy mjeMy n;EN4 n;EN4

~

Then we can define the set of local maximum by Q* = {W* | im,, 0+ LA WIAW)“LIWD) < ), YW € Q} The
proof of convergence follows the procedure by Simsek and Topaloglu (2018), but we take the additional parameter
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S into account. Firstly, we need to show that L (WD) > L (W) Vi € Z* so that we know bounded monotone
sequence must converges. Moreover, we need to show that lim; ., W) = W* € Q* and lim;_,, L (W(l)) =
L (W*). These can be guaranteed by satisfying the regularity conditions in Nettleton (1999).

3.4.1 Regularity Condition 1

The first regularity condition is that the likelihood function L (W) is continuous and differentiable on W over
Q. According to Puterman (1994, corollary C.4), the solution of the system of linear equations ®g5,, (Sy) =

(I-Pp gM)fT Ag,, always exists. Therefore, the probability of visiting not offered products ®3, (Si) is con-
tinuous and differentiable on all the entries involved in this operation. For the offered products, we know that
Gm; (Sm) = A, + ZWE 5y Pmim; P (Sm) Vm; € Sur. Therefore, we can see that 5/ (Sar) is continuous and
differentiable on (A s, Pyy). Similarly, ® 5 (S, Sy) is continuous and differentiable on W. The likelihood func-
tion is the product of entries of ®; (Sar) and @ (Sar, Sn) so it is continuous and differentiable on W over €.

3.4.2 Regularity Condition 2

The second regularity condition is that Q, = {W € Q| L (W) > a} is compact Va € R. According to Heine-Borel
theorem, a compact set is equivalent to a closed and bounded set over R. By our definition, €2 is closed and
bounded so €2, C Q is bounded. We can prove that €2, is closed by contradiction. Assume that a sequence
defined by {W(l) e, |le Z*} has limit W, ¢ Q. Since € is closed and bounded and €2, C €2, we have that
W. € Q\Q,. We can find some § > 0 such that L (W,) < a — 0 < «a. Since L (W) is continuous, we can always
find W such that |L (W,) — L (W®)| < §. Therefore, we have that L (W")) < a and W) ¢ Q,, whichis a

contradiction. Thus, any sequence { W € Q,, | | € Z*} has limit W, € £, so 2, is compact.

3.4.3 Regularity Condition 3

The third regularity conditon is that the path likelihood function L(l) (W) is continuous on W) and W over
Q) x Q. We need to show that all the entries of conditional expectation F M, G M, G N H,, is continuous on W,
We show this continuity by the similar method for regularity condition 1. Since all the solution

2 (53| WO) = (1- 0 ) AV

%5y »M(SMN'W(”) (1-P8) " (s0s,)
0l (Sulen, W) = (1-Pg,) P, 5,
O v (Sa1Sx L em,, W) = (1-P5) 7" P, 5

of systems of linear equations in each expectation-maximization iteration always exists, we have that all the entries
of <I’(—l) (Sumr |W(l)) <I>(l M (Sar, Sy | W), ('-)(l) ( (t) | em, ,W(l)) and G)(—l) v (521, SN | e, , W) are contin-

uous on WO, Since all the entries of conditional expectation Fu,Gu, G NIM> H u is calculated by multiplication
and division among the entries listed above and W, they are continuous on W"). Therefore, we can conclude
that Lg) (W) is continuous on W) and W over Q x Q.

4 Assortment Optimization

4.1 Linear Programming Formulation

After we have the estimation of all the parameters, we want to solve the assortment optimization problem to
maximize the expected revenue. Denote the price of product m; and n; by r,,; and 7, respectively. Firstly, we

13



want to discuss the expected revenue Gm, and In; by cases.

e When n; € Sy, the expected revenue g, |, = ;-

J

e When n; € Sy, the expected revenue g, |, = E Prijmilm; Gnifm; -
n;ENL

e When m; € Sy, the expected revenue g,,; = 7, + g Omjn;In;|m,; -
n; EN4

e Whenm; € S, the expected revenue Im; = Z Pmjm; Gm;
m;EM4

Therefore, this assortment optimization problem can be formulated by

min Z Am; Gm;

m;EM4
St Gnjim, > Ty Vn; € N4,

gnj‘mj Z Z pn3n1|mjgn7 vn] e N_;’_,

niEN+ (4)
Im; = Tm; + Z OmjniGnilm; Vmj € My,
n;EN4
Im; > Z Pmjim;9m; ij = M+,
m;EM

This problem is a linear program with decision variables { g, | m; € My} and {g,, | n; € N;}. We make the
decision whether we offer product m; and n; according to which constraint is tight. When g;; > 7y, is tight, it is
implied that r,,;, > > _x Pn;n,9;,- We can receive more revenue by selling product n; than allowing the interest
transferred to other products. Then we decide to offer product n;. On the contrary, when gy, > >° n pn;n. 9y, 18
tight, we receive more revenue by allowing the interest transferred from product n; to other products than selling
it. Then we decide not to offer product n;. Thus, this assortment optimization problem can be solved efficiently.
Since we know that a linear program has zero duality gap, we can easily write the dual program of the previous
linear program. The dual program is more intuitive and can be interpreted by maximizing the revenue. The dual
program is given by

max E T, Wi, + E Tn;Yn,

mi€M+ ni€N+
St W, + Ty, — Z Prmim; Ti = Am; VYm,; € My,
m; €M (5)
Z Om;n; Wm, + Yn; + Zn; — Z Prin;Zi = 0 an S N+,
m;EM n; EN4
Winjs Tmys Ynys Zn; =0 Ym; € My, nj € N,

4.2 Proof of Optimality

We denote the optimal solution to the linear program above by g}, and gy, For each optimal expected revenue
9y, |m, from product n; conditioned on a purchase decision on product m;, one of the first and the second constraint
must be tight, otherwise we can decrease g, |, by a small € and keep the solution feasible. Then the objective
value will decrease as well so the g7, |, is no longer the optimal solution. Similarly, we have that for each optimal

expected revenue gy, from product m;, one of the third and the fourth constraint must be tight. Therefore, we can
observe that this optimal solution satisfy that

* _ * * * *
gnj|m] = max {Tnja Z pnjni|’m,jgn73|m]} and gmj - IHaX{T‘mj + Z O—mjn,;gmwmja Z pm,jnugmi} .

n;EN n;EN m;EM
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Then we can obtain the maximum revenue from each customer by plugging g}, and gy, into 3=, crs, Am, gm,-
We can choose the optimal assortment as described in the previous subsection such that the revenue obtained by
each product is equal to g3, and gj;,.This completes the proof of optimality.

5 Numerical Experiments

To test the performance of the proposed model, we run some numerical experiments. The data for training and
testing in these experiments are generated according to the maximum utility model provided by Ghoniem et
al., (2016), which also takes the asymmetric cross-selling effect into consideration. In this model, customers are
classified into different segments. Each segment of customers has different reservation prices for each product.
Moreover, the correlation between the two categories is modeled that when a customer purchases a product from
the primary category, he will have new reservation prices for the secondary category products. The customer will
choose the product with the highest price below the reservation price to maximize utility. For the generated train-
ing data, we estimate the parameters for our proposed multi-category Markov chain choice model (Model 2) by
the derived expectation-maximization algorithm. In some business settings, such as most of the e-commerce, we
are allowed to offer different secondary products right after the purchase decision on primary category products
is made. On the contrary, for the retailers such as supermarkets, we are not allowed to offer different secondary
products immediately. In the following experiments, we have both online and offline settings. Then we can find
the optimal assortment and use this assortment to calculate the revenue from test data. Then we do the same thing
to the benchmark model (Model 1), which is the Markov chain choice model treating different categories indepen-
dently, and make comparison between the proposed model and benchmark model. The results of experiments are
presented in the following table.

Table 1: Performance of Two Models
Offline1l Online2 Online3 Offline4 Offline5

Number of observations 109 100 2x105  2x10° 2x106
Number of assortments 5000 5000 5000 4000 4000
Number of segments 100 100 500 1000 1000
Size of each category 10 10 10 10 10
Category 1 price Normal Normal Normal Gamma Gamma
Reservation price Normal Normal Normal Gamma Gamma
Model 1 accuracy 78.827%  77.481%  78.798%  31.933%  34.528%
Model 2 accuracy 78.825%  77.503%  78.756%  31.763% = 34.452%
Model 1 revenue 67747 73172 74291 410560 320789
Model 2 revenue 67985 78503 77737 413795 324477

The accuracy in the table above is calculated by the total number of wrong count of the estimated expected pur-
chases of each product compared with the actual purchases. From this table, we can see that the two models give
the similar estimation accuracy. Both of the two models fit the normal distributed price cases very well, but they
fit the gamma distributed price cases poorly. Furthermore, we can observe that the proposed model does improve
the revenue.

6 Conclusion

We explored the assortment optimization for multi-category products. We extended the Markov chain choice
model by adding the categorical transitions into the Markov chain, adapted the expectation-maximization algo-
rithm to fit my proposed model from sales data, and solved a linear program for assortment optimization. The
numerical experiments demonstrate that the proposed model gives about 1% to 5% more revenue than the Markov
chain choice model for independent choice across different categories. The Markov chain choice model shows
good flexibility in assortment problems under different business settings and tractability for parameter estimation
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and assortment optimization. In the future, we will work on a robust optimization formulation for this problem
to address with the potentially inaccurate parameter estimation.

7 Ongoing Study: Robust Assortment Optimization

However, when we assume that the transition matrix in the secondary category N is correlated to the purchase
decision in the primary category M, it leads to an explosion of parameters since we need |M, || N |* parameters
to handle the transition of interests within the secondary category given every purchase decision in the primary
category. When we do not have enough sales data of a product in the primary category, we may have estima-
tion with large variance. Therefore, we need some special treatments to find the optimal assortment against such
uncertainty. We use robust optimization with a careful construction of the uncertainty set to prevent from both
out-of-sample disappointment and excessive conservation. We do not want the uncertainty set in the robust opti-
mization contains extreme values, otherwise the solution will be very conservative. Due to the large variance of
estimated P Nlm; when the sales records of product m; is insufficient, this estimation may be an extreme value. A
possible method is to calculate a pseudo transition matrix P for the second category products. This pseudo tran-
sition matrix modified transition matrix are estimated using all the data, which reduce the variance and include
more possible correlations. Then we can determine P N|m, by taking both the P y|,,,, and Py into consideration. A
straight forward method is to calculate a weighted sum of the transition matrix P y,,; and Py. The weights can
be determined by two strategies.

7.0.1 Proportional Weights

The weights can be determined by the proportion of the purchase decision on product m;. If we have many sales
records of product m;;, then we can assign a larger weight to the transition matrix P y,,,,. A reasonable choice is to
compare the number of sales records of product m; to the average number of records of each product. Therefore,
we have that

7]
| M| T, | + 17|

M |T, |

= — Py, +
M| Ty, |+ [T V™

f)N\mj Py.

7.0.2 Greedy Weights

We can also find the weights « that fit the sales data best. Define that P Nim; = @m;PNjm; + (1 — am].) Prjm,-

Recall that the purchase data is denoted by Z N|m; and the probability of considering each not offered product
in category N is given by @5, (S, Sny) = (I—- PgN)_T

solving an optimization problem that

A, . We determine the weight for each product m; by

* . ;. o _ pT _
Ymy = arganglel%,l] 1Zx1m; = As PSNlmj Ps (Su,58) -

7.0.3 Robust Formulation

Then we can formulate and solve a robust optimization problem when we want to determine the optimal assort-
ment. Compared with the deterministic linear program, we allow the parameters varying in an uncertainty set
and solve for the optimal worst-case assortment. In this problem, we allow the transition matrix Py to vary. For
each entry Pnin; IN the transition matrix Py, we construct the lower bound of the uncertainty set by the minimum
of weighted parameter, which is givenby p = min {Pnin,im; | mj € My }. Similarly, we construct the upper
Loin, ilm.

bound for p,,;n; by pn,n, = max { Pring|m; | mj € My } Since we do not use the deterministic transition matrix, we
need to check the feasibility of each uncertain py,, by adding the constraint 3, .\ pn,n; = 1 for each product
n; into the uncertainty set. Therefore, we have the uncertainty set by

UPN = annJ e [Bnln]’ﬁnlnl} I Z pnan = 1 | ni)nj E N+
njeN4
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Then we want to use the uncertainty set to formulate a robust optimization problem. We use the dual program
of the original formulation, since it is more explainable under the setting of revenue maximization and the corre-
sponding robust optimization problem can also be explained by maximizing the worst-case revenue. We can write
the robust formulation by

max min E T, Wi, + E Tr Yn,
PNEZ/{PN k2 (2 (2 (2

mi€M+ TL,;EN+
st Wm; + T, — E Pmim; Ti = Am, Ym,; € My,
m;EM 4 (6)
§ Om;n; Wm, + Yn, + Zn; — E Prin;Zi = 0 vnj € N+7
mieﬂf+ ni€N+
Wiy Ty Yngy Zny =0 Vm; € My, nj € Ny.
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